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ABSTRACT
�eGeneral Data Protection Regulation (GDPR) was introduced in

Europe to o�er new rights and protections to people concerning

their personal data. We investigate GDPR from a database sys-

tems perspective, translating its legal articles into a set of capabil-

ities and characteristics that compliant systems must support. Our

analysis reveals the phenomenon of metadata explosion, wherein
large quantities of metadata needs to be stored along with the per-

sonal data to satisfy the GDPR requirements. Our analysis also

helps us identify the new workloads that must be supported un-

der GDPR. We design and implement an open-source benchmark

called GDPRbench that consists of workloads and metrics needed

to understand and assess personal-data processing database sys-

tems. To gauge how ready the modern database systems are for

GDPR, we modify Redis and PostgreSQL to be GDPR compliant.

Our evaluations show that this modi�cation degrades their perfor-

mance by up to 5×. Our results also demonstrate that the current

database systems are two to four orders of magnitude worse in

supporting GDPR workloads compared to traditional workloads

(such as YCSB), and also do not scale as the volume of personal

data increases. We discuss the real-world implications of these

�ndings, and identify research challenges towards making GDPR

compliance e�cient in production environments. We release all of

our so�ware artifacts and datasets at h�p://www.gdprbench.org
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1. INTRODUCTION
“Measure what is measurable, and make
measurable what is not so.”

Galileo Galilei
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�eEuropean Union enacted the General Data Protection Regu-

lation (GDPR) [36] on May 25th 2018, in response to a widespread

abuse of personal data. While monetizing personal data at scale

has existed since the early dot-com days, a systemic disregard

for the privacy and protection of personal data is a recent phe-

nomenon. For example, in 2017, Uber secretly paid o� [26] hack-

ers to delete the stolen personal data; Yahoo! confessed [31] that

three years ago, a the� had exposed all 3 billion of its user records;

Facebook admi�ed [41] that their APIs allowed illegal harvesting

of user data, which in turn in�uenced the U.S. and U.K. democratic

processes.

GDPRrights and responsibilities. To deter such practices, GDPR
declares the privacy and protection of personal data as a funda-

mental right of all European people. It grants several new rights
to the EU consumers including the right to access, right to recti-

�cation, right to be forgo�en, right to object, and right to data

portability. GDPR also assigns responsibilities to companies that
collect and process personal data. �ese include seeking explicit

consent before using personal data, notifying data breaches within

72 hours of discovery, maintaining records of processing activities,

among others. Failing to comply with GDPR could result in he�y

penalties: up to €20M or 4% of global revenue, whichever higher.

For instance, in January 2019, Google was �ned €50M for lacking

customer consent in their ads personalization [37]; in July 2019,

British Airways was �ned £184M for failing to safeguard personal

data of their customers [33].

GDPR compliance is challenging. Compliance with GDPR is

challenging for several reasons. First, GDPR’s interpretation of

personal data is broad as it includes any information that relates

to a natural person, even if it did not uniquely identify that per-

son. For example, search terms sent to Google are covered under

GDPR. �is vastly increases the scope of data that comes under

GDPR purview. Second, several GDPR requirements are funda-

mentally at odds with the design principles and operating prac-

tices of modern computing systems [40]. Finally, several GDPR

regulations are intentionally vague in their technical speci�cation

to accommodate future advancements in technologies. �is causes

confusion among developers of GDPR-compliant systems. It is no

surprise that recent estimates [8, 23] peg the compliance rate to

be <50%, even amongst companies that believe they ought to be

compliant.

Analyzing GDPR. In this work, we investigate how to under-

stand, achieve, and benchmark GDPR compliance of database sys-
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tems. To do so, we analyze GDPR and distill its articles into capa-

bilities and characteristics that datastores must support. We make

three key observations in our analysis.

1. We identify and characterize the phenomenon ofmetadata ex-
plosion, whereby every personal data item is associated with

up to sevenmetadata properties (like its purpose, time-to-live,

objections etc) that govern its behavior. By elevating each

personal data item into an active entity that has its own set

of rules, GDPR mandates that it could no longer be used as a

fungible commodity. �is is signi�cant from a database stand-

point as it severely impacts both the control- and data-path

operations of datastores.

2. We observe that GDPR’s goal of data protection by design and
by default con�icts with the traditional system design goals

of optimizing for performance, cost, and reliability. For ex-

ample, in order to investigate and notify any data breaches,

GDPR requires a record to be kept of all the interactions with

personal data. From a datastore perspective, this turns every

read operation into a read followed by a write.

3. Lastly, we identify that GDPR allows new forms of interac-

tions with the datastore. We discuss the characteristics of

these GDPR queries, and their implications for database sys-

tems.

GDPRbench. As our analysis reveals, GDPR signi�cantly a�ects

the design and operation of datastores that hold personal data.

However, none of the existing benchmarks recognize the abstrac-

tion of personal data: its characteristics, storage restrictions, or

interfacing requirements. We design and implement GDPRbench,
a new open-source benchmark that represents the functionalities

of a datastore deployed by a company that collects and processes

personal data. �e design of GDPRbench is informed by painstak-

ing analysis of the legal cases arising from GDPR from its �rst

year of roll-out. GDPRbench is composed of four core workloads:

Controller, Customer, Processor, and Regulator ; these core work-

loads are not captured by any database benchmark available to-

day. GDPRbench captures three benchmarking metrics for each

workload: correctness, completion time, and space overhead.

EvaluatingGDPR-CompliantDBMS. Finally, to gauge how ready

the modern database systems are for GDPR, we take two widely-

used, open-source database systems, Redis [10] (an in-memory

NoSQL store) and PostgreSQL [9] (a relational DBMS), and mod-

ify them to be GDPR-compliant. We followed recommendations

from the developers of these tools [12, 9] in making them GDPR-

compliant; the goal was to make minimal changes, not to redesign

the systems for GDPR compliance. While both systems are able

to achieve GDPR compliance with a small amount of e�ort, the

resulting systems experienced a performance slow down of 5×
and 2× respectively. We evaluated the performance of GDPR-

compliant Redis and PostgreSQL using GDPRbench. We observed

that both systems were operating at a throughput that is two to

�ve orders of magnitude lower than that of the traditional work-

loads. Our analyses and experiments identify several implications

for administering GDPR-compliant database systems in the real

world.

Limitations. Ourwork exclusively focuses onGDPR.While GDPR

is a highly visible privacy regulation, several governments [3, 14]

are independently working on their own privacy regulations. We

acknowledge that some our �ndings, analyses, and compliance ef-

forts may not generalize to all the privacy laws. Second, our exper-

iments show a signi�cant drop in performance due to achieving

GDPR compliance. �ough we identify the technical challenges

that must be solved to bridge this gap, we have not a�empted

to solve these challenges. Finally, the design of GDPRbench is

guided by several factors including (i) our interpretation of GDPR,

(ii) real-world GDPR case studies, and (iii) the two database sys-

tems that we investigated. As such, we recognize that the current

iteration of GDPRbench is only a snapshot in time, and may need

to evolve as more technical and legal use cases emerge.

Summary of contributions. Our work lays the foundation for

understanding and benchmarking the impact of GDPR on database

systems. In particular, we make the following contributions:

• GDPR Analysis: Our work is the one of the �rst to explore

GDPR from a database systems perspective. We analyze the

articles of GDPR, both individually and collectively, to dis-

till them into a�ributes and actions for database systems. In

doing so, we (i) observe the phenomenon of metadata explo-

sion, and (ii) identify the new workloads that personal data

systems must support.

• Design and Implementation of GDPRbench: To enable

customers, companies and regulators interpret GDPR com-

pliance in a rigorous and systematic way, we design an open-

source GDPR centric benchmark. In GDPRbench, we model

the queries and workloads that datastores encounter in the

real-world, and develop metrics to succintly represent their

behavior. We make all our so�ware artifacts publicly avail-

able at h�p://www.gdprbench.org.

• Experimental Evaluation: We discuss our e�ort into trans-

forming Redis and PostgreSQL to be GDPR-compliant. Our

evaluation shows that due to GDPR compliance, Redis experi-

ences a performance degradation of 5×, and PostgreSQL, 2×.
Using GDPRbench, we show the completion time and storage

space overhead of these compliant systems against real-world

GDPR workloads. Finally, we share our insights on deploying

compliant systems in production environments, implications

of scaling personal data, as well as research challenges to-

wards making GDPR compliance, fast and e�cient.

2. BACKGROUND
Webeginwith a primer onGDPR including its internal structure

and its adoption challenges in the real world. �en, we discuss

related work to set a context for our contributions.

2.1 GDPR Overview
�e European parliament adopted GDPR on April 14th 2016,

and made it an enforceable law in all its member states starting

May 25th 2018. Its objective is to set ground rules for processing

personal data such that its commoditization does not con�ict with

the rights and protection of the people.

GDPR is wri�en
1

as 99 articles that describe its legal require-

ments, and 173 recitals that provide additional context and clari�-
cations to these articles. �e articles (henceforth pre�xed with G )

could be grouped into �ve broad categories. G 1-11 articles layout

the de�nitions and principles of personal data processing; G 12-23

establish the rights of the people; then G 24-50 mandate the re-

sponsibilities of the data controllers and processors; the next 26

describe the role and tasks of supervisory authorities; and the re-

mainder of them cover liabilities, penalties and speci�c situations.

We expand on the three categories that concern systems storing

personal data.

1
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Principles of data processing. GDPR establishes several core

principles governing personal data. For example, G 5 requires that

data collection be for a speci�c purpose, be limited to what is

necessary, stored only for a well de�ned duration, and protected

against loss and destruction. G 6 de�nes the lawful basis for pro-

cessing, while G 7 describes the role of consent.

Rights of data subjects. GDPR grants 12 explicit and excercis-

able rights to every data subject (a natural person whose personal

data is collected). �ese rights are designed to keep people in loop

throughout the lifecycle of their personal data. At the time of col-

lection, people have the right to know the speci�c purpose and

exact duration for which their data would be used (G 13, 14). At

any point, people can access their data (G 15), rectify errors (G 16),

request erasure (G 17), download or port their data to a third-party

(G 20), object to it being used for certain purposes (G 21), and �-

nally, withdraw from automated decision-making (G 22).

Responsibilities of data controllers. �e third group of articles

outline the responsibilities of data controllers (entities that collect

and utilize personal data) and data processors (entities that process

personal data on behalf of a controller). To clarify, when Net�ix

runs their recommendation algorithm on Amazon’s MapReduce

platform, Net�ix is the controller and Amazon, the processor. Key

responsibilities include designing secure infrastructure (G 24, 25),

maintaining records of processing (G 30), notifying data breaches

within 72 hours (G 33, 34), analyzing risks prior to processing large

amounts of personal data (G 35, 36) and controlling the location of

data (G 44). Additionally, the controllers should create interfaces

for people to exercise their GDPR rights.

2.2 GDPR from a Database Perspective
GDPR de�nes four entities—controller, customer, processor, and

regulator—that interact with the data store. Figure–1 shows how

three distinct types of data �ows between the GDPR entities and

data stores. �e database that hosts personal data and its associ-

ated metadata (purpose, objections etc.,) is the focus of our work.

We distinguish it from the other store that contains non-GDPR

and derived data as the rules of GDPR do not apply to them.

�e controller is responsible for collection and timely deletion

of personal data as well as managing its GDPR metadata through-

out the lifecycle. �e customers interact with the data store to

exercise their GDPR rights. �e processor uses the stored per-

sonal data to generate derived data and intelligence, which in turn

powers the controller’s businesses and services. Finally, the reg-

ulators interact with the datastores to investigate complaints and

to ensure that rights and responsibilities are complied with.

Our focus on datastores is motivated by the high proportion of

GDPR articles that concern them. From out of the 99 GDPR arti-

cles, 31 govern the behavior of data storage systems. In contrast,

only 11 describe requirements from compute and network infras-

tructure. �is should not be surprising given that GDPR is more

focused on the control-plane aspects of personal data (like col-

lecting, securing, storing, moving, sharing, deleting etc.,) than the

actual processing of it.

2.3 GDPR in the Wild
�e �rst year of GDPR has demonstrated both the need for and

challenges of a comprehensive privacy law. On one hand, peo-

ple have been exercising their newfound rights like the ability to

download all the personal data that companies have amassed on

them [18], and not been shy to report any shortcomings. In fact,

the EU data protection board reports [16] 94622 complaints from

individuals and organizations in the �rst 9 months of GDPR.

Customer

Regulator

Controller
(e.g., Netflix)

Processor 
(e.g., Amazon 
map-reduce)

Non-GDPR and 
derived data

Personal- and 
meta-data store

Personal data
GDPR metadata
Derived data

inser
t

create, delete,
update

read,
update,
delete

rea
d

rea
d

any operation

Figure 1: GDPR de�nes four roles and distinguishes between three
types of data. Only the datastore that contains personal and GDPR
metadata comes under the GDPR purview. �e arrows out of a data-
store indicate read-only access, while the arrows into it modify it. (1)
�e controller can collect, store, delete and update any personal- and
GDPR-metadata, (2) A customer can read, update, or delete any per-
sonal data and GDPR-metadata that concerns them, (3) A processor
reads personal data and produces derived data, and (4) Regulators
access GDPR metadata to investigate customer complaints.

However, any a�empt to regulate decade-long practices of com-

moditizing personal data is not without consequences. A number

of companies like Instapaper, Klout, and Unroll.me voluntarily ter-

minated their services in Europe to avoid the hassles of compli-

ance. Like wise, most of the programmatic ad exchanges [20] of

Europe were forced to shut down. �is was triggered by Google

and Facebook restricting access to their platforms to those ad ex-

changes that could not verify the legality of the personal data they

possessed. But, several organizations could comply by making mi-

nor modi�cations to their business models. For example, media

siteUSA Today turned o� all advertisements [42], whereas the New
York Times stopped serving personalized ads [21].

As G 28 precludes employing any data processor that does not

comply with GDPR, the cloud providers have been swi� in show-

casing [49, 48, 35] their compliance. However, given the mone-

tary and technical challenges in redesigning the existing systems,

the focus has unfortunately shi�ed to reactive security. It is still
an open question if services like Amazon Macie [5], which em-

ploys machine learning to automatically discover, monitor, and

alert misuse of personal data on behalf of legacy cloud applica-

tions would survive the GDPR scrutiny.

Regulators have been active and vigilant as well: the number

of ongoing and completed investigations in the �rst 9 months of

GDPR is reported to be 206326. Regulators have already levied

penalties on several companies including €50M on Google [37] for

lacking a legal basis for their ads personalization, and £184M on

British Airways [33] for lacking security of processing. However,

3



the clearest sign of GDPR’s e�ectiveness is in the fact that regula-

tors have received 64684 voluntary data breach noti�cations from

companies in the �rst ninemonths of GDPR. In contrast, that num-

ber was 945 for the six months prior to GDPR [43].

3. DESIGNING FOR COMPLIANCE
We analyze the articles of GDPR, both individually and collec-

tively, from a database system perspective. �e goal of this section

is to distill our analysis into a�ributes and actions that correspond

to database systems. We identify three overarching themes: how

personal data is to be represented, how personal data is to be pro-

tected, and what interfaces need to be designed for personal data.

Finally, we determine the impact of these themes on database sys-

tems.

3.1 Characterizing Personal Data
GDPR de�nes personal data to be any information concerning

a natural person. As such, it includes both personally identi�able

information like credit card numbers as well as information that

may not be unique to a person, say search terms sent to Google.

�is signi�cantly increases the proportion of data that comes un-

der GDPR purview. Also, by not restricting the applicability of

GDPR to any speci�c domains like health and education as in the

case of HIPAA [2] and FERPA [1] respectively, GDPR brings in

virtually all industries under its foray.

Next, to govern the lifecycle of personal data, GDPR introduces

several behavioral characteristics associated with it; we call these

GDPR metadata. �is constitutes a big departure from the evo-

lution of data processing systems, which have typically viewed

data as a helper resource that could be fungibly used by so�ware

programs to achieve their goals. We discover that, when taken

collectively, these metadata a�ributes convert personal data from

an inert entity to a dynamic entity that possesses its own purpose,

objections, time-to-live etc., such that it can no longer be used as a

fungible commodity. Below, we list the seven metadata a�ributes

that must be stored along with every piece of personal data.

1. Purpose. G 5(1b) states that personal data should only be col-

lected for speci�c and explicit purposes, and not further pro-

cessed in a manner incompatible with those purposes. �en,

G 6(1a) de�nes processing to be lawful only if the customer

has given consent for their data to be used for a speci�c pur-

pose. As has been established in the recent Google case [37],

GDPR explicitly prohibits any purpose bundling.

2. Time to live. Given the value of personal data, the long-

standing practice in computing has been to preserve them

forever (or at least till they are economically viable). How-

ever, G 5(1e) mandates that personal data shall be kept for no

longer than necessary for the purposes for which it was col-

lected. In addition, G 13(2a) requires the controller to provide

this TTL value to the customer at the time of data collection.

3. Objections. G 21 grants users a right to object, at any time, to

any personal data being used for any purposes. �is right is

broadly construed, and a controller has to demonstrate com-

pelling legitimate grounds to override it. �is property, es-

sentially sets up a blacklist for every personal data item.

4. Audit trail. G 30 requires controllers and processors to keep

the audit trail of all the operations performed on personal

data. �en, G 33 requires that in the event of a data breach,

the controller shall make available a detailed audit trail con-

cerning accesses to personal data.

5. Origin and sharing. Every personal data item should have

an origin i.e., how it was originally procured, and sharing in-

formation i.e., external entities with which it has been shared

(G 13, 14). �e data trail set up by these articles should enable

customers to track their personal data in secondary markets.

6. Automated decision-making. �is concerns the emerging

use of algorithmic decision-making. G 15(1) grants customers

a right to seek information on which of their personal data

was used in automated decision-making. Conversely, G 22 al-

lows them to request that their personal data be not used for

automated decision-making.

7. Associated person. G 15 enables users to ask for all the per-

sonal data that concern them along with all the associated

GDPR metadata. As such, it is imperative to store the identi-

�cation of the person to whom it concerns.

Impact on Database System Design. We call our observation

that every personal data item should be associated with a set of

GDPR metadata properties as metadata explosion. �is has signif-

icant consequences in both control- and data-path operations of

database systems. First, having to store metadata along with the

data increases the overall storage space. Second, having to validate

each access (for purpose etc.,) and having to update a�er each ac-

cess (for audit etc.,), increases the access latency for personal data.

�ough it may be possible to optimize—for example, by reusing

some metadata across records, and caching reads—the overheads

cannot be reduced to trivial.

3.2 Protecting Personal Data
GDPR declares (in G 24) that those who collect and process per-

sonal data are solely responsible for its privacy and protection.

�us, it not onlymandates the controllers and processors to proac-

tively implement security measures, but also imposes the burden

of proving compliance (in G 5(2)) on them. Based on our analysis

of GDPR, we identify �ve security-centric features that must be

supported in the database system for it to be compliant.

1. Timely Deletion. In addition to G 5(1e) that requires every

personal data item to have an expiry date, G 17 grants cus-

tomers the right to request erasure of their personal data at

any time. �us, datastores must have mechanisms to allow

timely deletion of possibly large amounts of data.

2. Monitoring andLogging. As perG 30 andG 33, the database

system needs to maintain audit trails of all operations in both

data path (i.e., read or write) and control path (say, changes

to access control).

3. Indexing via Metadata. Ability to access groups of data

based on one or more metadata �elds is essential. For ex-

ample, controllers needing to modify access control (G 25(2))

against a given customer’s data; G 28(3c) allowing processors

to access only those personal data for which they have req-

uisite access and valid purpose; G 15-18, 20-22 granting cus-

tomers the right to act on their personal data in a collective

manner (deleting, porting, downloading etc.,); �nally, G 31 al-

lowing regulators to seek access to metadata belonging to af-

fected customers.

4. Encryption. G 32 requires controllers to implement encryp-

tion on personal data, both at rest and in transit. While pseudo-

nymization may help reduce the scope and size of data need-

ing encryption, it is still required of the datastore.
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No GDPR article/clause What they regulate Impact on database systems
A�ributes Actions

5 Purpose limitation Collect data for explicit purposes Purpose Metadata indexing

5 Storage limitation Do not store data inde�nitely TTL Timely deletion

13

14
Information to be provided […]

Inform customers about all the GDPR

metadata associated with their data

Purpose, TTL,

Origin, Sharing
Metadata indexing

15 Right of access by users Allow customers to access all their data Person id Metadata indexing

17 Right to be forgotten Allow customers to erasure their data TTL Timely deletion

21 Right to object Do not use data for any objected reasons Objections Metadata indexing

22 Automated individual decision-making
Allow customers to withdraw from

fully algorithmic decision-making

Automated

decisions
Metadata indexing

25 Data protection by design and default Safeguard and restrict access to data — Access control

28 Processor Do not grant unlimited access to data — Access control

30 Records of processing activity Audit all operations on personal data Audit trail Monitor and log

31 Cooperation w/ supervisory authority Allow regulators access to system logs Audit trail Monitor and log

32 Security of processing Implement appropriate data security — Encryption

33 Notification of personal data breach Share audit trails from a�ected systems Audit trail Monitor and log

Table 1: �e table maps the requirements of key GDPR articles into database system a�ributes and actions. �is provides a blueprint for
designing new database systems as well as retro��ing the current systems into GDPR compliance.

5. Access Control. G 25(2) calls on the controller to ensure that

by default, personal data are not made accessible to an indef-

inite number of entities. So, to limit access to personal data

based on established purposes, for permi�ed entities, and for

a prede�ned duration of time, the datastore needs an access

control that is �ne-grained and dynamic.

Impact on Database System Design. GDPR’s goal of data pro-
tection by design and by default sits at odd with the traditional

system design goals of optimizing for cost, performance, and reli-

ability. While our analysis identi�ed a set of just �ve security fea-

tures, we note that modern database systems have not evolved to

support these features e�ciently. �us, a fully-compliant database

system would likely experience signi�cant performance degrada-

tion.

3.3 Interfacing with Personal Data
GDPR de�nes four distinct entities—controller, customer, pro-

cessor, and regulator—that interface with the database systems

(shown in Figure 1). �en, its articles collectively describe the

control- and data-path operations that each of these entities are

allowed to perform on the database system. We refer to this set of

operations asGDPR queries, and group them into seven categories:

• CREATE-RECORD to allow controllers to insert a record con-

taining personal data with its associated metadata (G 24).

• DELETE-RECORD-BY-{KEY|PUR|TTL|USR} to allow cus-

tomers to request erasure of a particular record (G 17); to al-

low controllers to delete records corresponding to a completed

purpose (G 5.1b), to purge expired records (G 5.1e), and to clean

up all records of a particular customer.

• READ-DATA-BY-{KEY|PUR|USR|OBJ|DEC} to allow pro-

cessors to access individual data items or those matching a

given purpose (G 28); to let customers extract all their data

(G 20); to allow processors to get data that do not object to spe-

ci�c usage (G 21.3) or to automated decision-making (G 22).

• READ-METADATA-BY-{KEY|USR|SHR} to allow customers

to �nd out metadata associated with their data (G 15); to assist

regulators to perform user-speci�c investigations, and inves-

tigations into third-party sharing (G 13.1).

• UPDATE-DATA-BY-KEY to allow customers to rectify in-

accuracies in personal data (G 16).

• UPDATE-METADATA-BY-{KEY|PUR|USR} to allow cus-

tomers to change their objections (G 18.1) or alter previous

consents (G 7.3); to allow processors to register the use of given

personal data for automated decision making (G 22.3); to en-

able controllers to update access lists and third-party sharing

information for groups of data (G 13.3).

• GET-SYSTEM-{LOGS|FEATURES} to enable regulators to
investigate system logs based on time ranges (G 33, 34), and to

identify supported security capabilities (G 24,25).

Impact on Database System Design. When taken in totality,

GDPR queries may resemble traditional workload, but it would be

remiss to ignore two signi�cant di�erences: (i) there is a heavy

skew of metadata-based operations, and (ii) there is a need to en-

force restrictions on who could perform which operations under

what conditions. �ese observations make it impractical to store

GDPRmetadata away from the personal data (say, on backup stor-

age to savemoney), which in turnmay a�ect system optimizations

like caching and prefetching (since the results, and even the ability

to execute a query are conditional on several metadata factors).

3.4 Summary
Table–1 summarizes our analysis of GDPR. We identify three

signi�cant changes needed to achieve GDPR compliance: ability to

handle metadata explosion, ability to protect data by design and by
default, and ability to support GDPR queries. While it is clear that

these changes will a�ect the design and operation of all contem-

porary database systems, we lack systematic approaches to gauge

the magnitude of changes required and its associated performance

impact. Towards solving these challenges, we design GDPRbench,
a functional benchmark for GDPR-compliant database systems (in

Section-4), and present a case study of retro��ing two popular

databases into GDPR compliance (in Section-6).
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4. GDPRBENCH
GDPRbench is an open-source benchmark to assess the GDPR

compliance of database systems. It aims to provide quanti�able

ground truth concerning correctness and performance under GDPR.

In the rest of this section, we motivate the need for GDPRbench,

and then present its design and implementation.

4.1 Why (a New) Benchmark?
As our analysis in Section-3 reveals, GDPR signi�cantly a�ects

the design and operation of datastores that hold personal data.

However, existing benchmarks like TPC and YCSB do not rec-

ognize the abstraction of personal data: its characteristics, stor-

age restrictions, or interfacing requirements. �is is particularly

troublesome given the diversity of stakeholders and their con�ict-

ing interests. For example, companies may prefer a minimal com-
pliance that avoids legal troubles without incurring much perfor-

mance overhead or modi�cations to their systems. On the other

hand, customers may want to see a strict compliance that priori-
tizes their privacy rights over technological and business concerns

of controllers. Finally, regulators need to arbitrate this customer-

controller tussle in a fast-evolving technologyworld. �us, having

objective means of quantifying GDPR compliance is essential.

A rigorous framework would allow system designers to com-

pare and contrast the GDPR implications of their design choices, as

well as enable service providers to be�er calibrate their o�erings.

For example, many cloud providers currently report the GDPR

compliance of their services in a coarse yes-no format [6], making

it di�cult for regulators and customers to assess either the com-

pliance levels or performance impact. Finally, many governments

around the world are actively dra�ing privacy regulations. For in-

stance, India’s ongoing Personal Data Protection bill [14], and Cal-

ifornia’a proposed Consumer Privacy Act (CCPA) [3]. �is bench-

mark provides a methodical way to study the e�cacy of GDPR

regulations, and then adopt suitable parts of this law.

4.2 Benchmark Design
Our approach to benchmark design is guided by two factors:

insights from our GDPR analysis, and real-world data from the

�rst year of GDPR roll out. At a high level, GDPRbenchmodels the

working of a database deployed by an organization that collects

and processes personal data. Below, we describe the key elements

of the benchmark design.

4.2.1 Data Records
Given the stringent requirements of GDPR, it is prudent to as-

sume that personal data would be stored separately from other

types of data. �us, our benchmark exclusively focuses on per-

sonal data records. Each record takes the form <Key><Data>
<Metadata>, where <Key> is a variable length unique iden-

ti�er, <Data> is a variable length personal data, and <Meta-
data> is a sequence of seven a�ributes, each of which has a three

le�er a�ribute name followed by a variable length list of a�ribute

values. We enforce all the �elds of the record to have ASCII char-

acters (except for semicolon and comma, which we use as separa-

tors). We illustrate this with an example record:

ph-1x4b;123-456-7890;PUR=ads,2fa;TTL=365days;
USR=neo;OBJ=∅;DEC=∅;SHR=∅;SRC=first-party;

Here, ph-1x4b is the unique key and 123-456-7890 is

the personal data. Following these two, we have seven a�ributes

namely purpose (PUR), time-to-live (TTL), user (USR), objections

(OBJ), automated decisions (DEC), third-party sharing (SHR), and

originating source (SRC). Some a�ributes have a single value, some

have a list of values, and a few others have ∅.

4.2.2 Workloads
We de�ne four workloads that correspond to the four core en-

tities of GDPR: controller, customer, processor and regulator. We

compose the workloads using the queries outlined in Section-3.3,

and concerning only the �ow of personal data and its associated

metadata (denoted in Figure–1 by thick and do�ed lines respec-

tively). �en, we glean over usage pa�erns and traces from the

real-world to accurately calibrate the proportion of these queries

and the distribution of the data records they act on. However, since

GDPR is just a year old, the availability of said data in the public

domain is somewhat limited. �us, for those situation where no

real data is available, we make reasonable assumptions in compos-

ing the workloads. �e resulting GDPRbench workloads are sum-

merized in Table–2, and described in detail below. While GDPRbench

runs these workloads in its default con�guration, we make it pos-

sible to update or replace themwith customworkloads, when nec-

essary.

Controller. �e controller workload consists of three categories

of operations: (i) creation of records, (ii) timely deletion of records,

and (iii) updates to GDPRmetadata towards managing access con-

trol, categorization, third-party sharing, and locationmanagement.

While the controller is also responsible for the security and relia-

bility of the underlying storage system, we expect these to be in-

frequent, non real-time operations and thus, do not include them

in our queries.

To determine the frequency and distribution of operations, we

rely on three GDPR properties: �rst, in a steady state, the number

of records createdmustmatch the number of records deleted (since

G 5.1 mandates that all personal data must have an expiry date);

next, a valid sequence of operation for each record should always

be create, updates, and delete in that order; lastly, the controller

queries should follow a uniform distribution (since G 5.1c prevents

the controller from collecting any data that are not necessary or

useful). We set the update queries to occur twice as frequently as

creates and deletes.

Customer. �isworkload represents the key rights that customers

exercise while interfacing with the database system: (i) the right

to delete any of their data, (ii) the right to extract and port all their

data, (iii) the right to rectify their personal data, and �nally (iv) the

right to access and update the metadata associated with a given

personal data.

To determine the frequency and distribution of customer queries,

we study operational traces fromGoogle’s implementation of Right-

to-be-Forgo�en (RTBF) [15] in Europe. �ough GDPR has a name-

sake article (G 17), RTBF is a distinct 2014 EU ruling that allowed

individuals to request the search engines to delist URLs that con-

tain inaccurate, irrelevant and excessively personal information

from their search results. We gather three high-level takeaways

from the Google report: �rst, they received 2.4 million requests

over a span of three years at a relatively stable average of 45k

monthly requests. Second, 84.5% of all delisting requests came

from individual users. Finally, the requests showed a heavy skew

towards a small number of users (top 0.25% users generated 20.8%

delisting). Based on these insights, we compose our customerwork-

load by assigning equal weights to all query types and con�guring

their record selections to follow a Zipf distribution.

Regulator. �e role of the regulator is to investigate and enforce

the GDPR laws. In case of data breaches or systematic compliance
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Workload Purpose Operations Default Default
Weights Distrib.

Controller

Management and

administration of

personal data

create-record 25%

Uniformdelete-record-by-{pur|ttl|usr} 25%

update-metadata-by-{pur|usr|shr} 50%

Customer
Exercising

GDPR rights

read-data-by-usr 20%

Zipf

read-metadata-by-key 20%

update-data-by-key 20%

update-metadata-by-key 20%

delete-record-by-key 20%

Processor
Processing of

personal data

read-data-by-key 80% Zipf

read-data-by-{pur|obj|dec} 20% Uniform

Regulator

Investigation and

enforcement of

GDPR laws

read-metadata-by-usr 46%

Zipfget-system-logs 31%

verify-deletion 23%

(a) Core Workloads

GDPR
Workloads

Controller, Customer
Processor, Regulator

Core Infrastructure

DBMS Systems

DB Interface Layer
PostgreSQL, Redis, 30 Others

Workload 
Executor
Core, GDPR

Runtime Engine
Threads, Stats

Core
Workloads

A  B  C  
D  E  F

. . .

. . .

(b) Architecture

Figure 2: GDPRbench core workloads (a), and its architecture (b). �e table describes the high-level purpose of each workload along with its
composite queries and their default parameters. We select these defaults based on GDPR properties, data from EU regulators, and usage pa�erns
from industry. �e architecture diagram shows the components of YCSB that we reused in gray and our GDPR-speci�c extensions in blue.

violations, the regulator would summon access to detailed system

logs for the period of interest. In case of privacy rights violation of

individual customers, they would seek access to the GDPR meta-

data associatedwith that particular customer. However, regulators

do not need access to any personal data.

To calibrate the regulator workload, we inspect the European

Data Protection Board’s summary [16] of the �rst 9 months of

GDPR roll out. It reports that the supervisory authorities received

206326 complaints EU-wide. Out of these, 94622 (46%) were di-

rect customer complaints concerning their privacy rights, 64684

(31%) were voluntary data breach noti�cations from controllers,

and the rest (23%) were statutory inquiries against multinational

companies, and complaints by non-government and civil rights

organizations. We set the weights of regulator queries to match

the percentages from this report. Next, in line with the Google

RTBF experience, we expect the rights violations and compliance

complaints to follow a Zipf distribution.

Processor. �e processor, working on behalf of a controller, per-

forms a well-de�ned set of operations on personal data belong-

ing to that controller. While this role is commonly external, say a

cloud provider, the law also allows controllers to be processors for

themselves. In either case, the processor workload is restricted to

read operations on personal data.

We compose the processor workload to re�ect both existing and

emerging access pa�erns. For the former, we refer to the �ve

representative cloud application workloads identi�ed by YCSB, as

shown in Table–3. While some operations (like updates and in-

serts) are not permi�ed for processors, their access pa�erns and

record distributions are still relevant. For the emerging category,

we rely on our GDPR analysis, which identi�es access pa�erns

conditioned on metadata a�ributes like purpose and objection.

Since this is still an emerging category, we limit its weight to 20%.

4.2.3 Benchmark Metrics

We identify three metrics that provide a foundational charac-

terization of a database’s GDPR compliance: correctness against

GDPR workloads, time taken to respond to GDPR queries, and the

storage space overhead.

Correctness. We de�ne correctness as the percentage of query

responses that match the results expected by the benchmark. �is

number is computed cumulatively across all the four workloads. It

is important to note that correctness as de�ned by GDPRbench is a

necessary but not su�cient condition for the database to be GDPR

compliant. �is is because GDPR compliance includes multitude

of issues including data security, breach noti�cation, prior consul-

tation and others that cover the whole lifecycle of personal data.

However, the goal of this metric is to provide a basic validation

for a database’s ability to store and process metadata-based access

control.

Completion time. �is metric measures the time taken to com-

plete all the GDPR queries, and we report it separately for each

workload. For majority of GDPR workloads, completion time is

more relevant than the traditional metrics like latency. �is is be-

cause GDPR operations embody the rights and responsibilities of

the involved actors, and thus, their utility is reliant upon com-

pleting the operation (and not merely starting them). �is is also

re�ective of the real world, where completion time gets reported

more prominently than any other metric. For e.g., Google cloud

guarantees that any request to delete a customer’s personal data

would be completed within 180 days.

Space overhead. It is impossible for a database to comply with

the regulations of GDPR without storing large volumes of meta-

data associated with personal data (a phenomenon described in

Section-3.1 as metadata explosion). Since the quantity of meta-

data overshadows that of personal data, it is an important metric

to track. GDPRbench reports this metric as the ratio of total size of

the database to the total size of personal data in it. �us, by de�ni-

tion, it will always be a rational number >1. As a metric, storage
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space overhead is complementary to completion time since opti-

mizing for one will likely worsen the other. For example, database

applications can reduce the storage space overhead by normaliz-

ing the metadata. However, this will increase the completion time

of GDPR queries by requiring access to multiple tables.

4.3 Implementation
We implement GDPRbench by adapting and extending YCSB.

�is choice was driven by two factors. First, YCSB is an open-

source benchmark with a modular design, making it easy to reuse

its components and build new ones on top of it. Second, it is amod-

ern benchmark (released in 2010) and has a widespread commu-

nity adoption with support for 30+ storage and database systems.

In the following, we describe the architecture and operations of

GDPRbench.

Figure–2b shows the core infrastructure components of YCSB

(in gray), and our modi�cations and extensions (in blue). Along-

side the core workloads of YCSB, we create new GDPR workloads

that describe operations and their proportions for GDPR roles (as

in Table–2). Inside the YCSB core infrastructure, we modify the

workload engine to parse GDPR queries and translate them to

corresponding storage operations. Note that we reuse the YCSB

runtime engine that manages threads and statistics. Finally, the

storage interface layer consists of client stubs (one per database

system) that translates the generic operations into speci�c APIs

supported by a given storage/database system. Since GDPR in-

troduces many new operations that are not natively supported by

most database systems (for example, se�ing TTL for a record, or

operations based on metadata), we had to implement new client

stubs for all database systems. �us far, we have added support

for Redis and PostgreSQL, but our goal is to extend this to most

major database systems. We have added or modi�ed ∼1300 LoC

in the workload engine, and ∼ 400 LoC for Redis and PostgreSQL

clients.

5. GDPR-COMPLIANT DBMS
Our goal is to present a case study of retro��ing current gener-

ation systems to operate in a GDPR world. Accordingly, we select

two widely used open-source systems: Redis [10], an in-memory

NoSQL store, and PostgreSQL [9], a fully featured RDBMS. Our ef-

fort to transform Redis and PostgreSQL into GDPR compliance is

largely guided by the recommendations in their o�cial blogs [12,

9], and other experiences from real-world deployments. While

we intend to introduce GDPR compliance into more database sys-

tems, and integrate them with GDPRbench, we picked Redis and

PostgreSQL as our initial choices as they represent distinct design

philosophies, and thus provides a level of generality for our �nd-

ings. In the following, we describe our code and con�guration

changes to these two systems, and present microbenchmark mea-

surements.

5.1 Redis
From amongst the features outlined in Section-3, Redis fully

supports monitoring; partially supports timely deletion and meta-

data indexing; but o�ers no native support for encryption and ac-

cess control. In lieu of natively extending Redis’ limited security

model, we incorporate third-party modules for encryption. For

data at rest, we use the Linux Uni�ed Key Setup (LUKS) [7], and

for data in transit, we set up transport layer security (TLS) us-

ing Stunnel [11]. We defer access control to DBMS applications,

and in our case, we extend the Redis client in GDPRbench to en-

force metadata-based access rights. Next, while Redis o�ers sev-

eral mechanisms to generate audit logs, we determine that piggy-
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Figure 3: Microbenchmarks: (a) Redis’ delay in erasing the expired
keys beyond their TTL. Our modi�ed TTL algorithm in the GDPR-
compliant Redis erases all the expired keys within sub-second latency.
(b) PostgreSQL’s performance worsens signi�cantly as secondary in-
dices are introduced.

backing on append-only-�le (AOF) results in the least overhead.

However, since AOF only records the operations that modify Re-

dis’ state, we update its internal logic to log all interactions includ-

ing reads and scans.

Finally, though Redis o�ers TTL natively, it su�ers from inde-

terminism as it is implemented via a lazy probabilistic algorithm:

once every 100ms, it samples 20 random keys from the set of keys

with expire �ag set; if any of these twenty have expired, they are

actively deleted; if less than 5 keys got deleted, then wait till the

next iteration, else repeat the loop immediately. �us, as percent-

age of keys with associated expire increases, the probability of

their timely deletion decreases. To quantify this delay in erasure,

we populate Redis with keys having expiry times. �e time-to-live

values are set up such that 20% of the keys will expire in short-

term (5 minutes) and 80% in the long-term (5 days). Figure– 3a

then shows the time Redis took to completely erase the short-term

keys a�er 5 minutes have elapsed. As expected, the time to era-

sure increases with the database size. For example, when there are

128k keys, clean up of expired keys (∼25k of them) took nearly 3

hours. To support a stricter compliance, we modify Redis to iter-

ate through the entire list of keys with associated EXPIRE. �en,

we re-run the same experiment to verify that all the expired keys

are erased within sub-second latency for sizes of up to 1 million

keys.

5.2 PostgreSQL
As a feature-rich RDBMS, PostgreSQL o�ers native support to

four of the �ve GDPR features, with the exception of Timely dele-
tion. For encryption, we set up LUKS and SSL (in verify-CAmode).

For logging, in addition to the built-in csvlog, we set up a row-level

security policy to record query responses. Next, we create meta-

data indexing via the built-in secondary indices. As with Redis,

we enforce metadata-based access control in the external client of

GDPRbench. Finally, since PostgreSQL does not o�er native sup-

port for time-based expiry of rows, wemodify theINSERT queries

to include the expiry timestamp and then implement a daemon

that checks for expired rows periodically (currently set to 1 sec).

To e�ciently support GDPR queries, an administrator would

likely con�gure secondary indices for GDPR metadata. Interest-

ingly, while PostgreSQL natively supports secondary indices, we

observe that its performance begins to drop sign�cantly when the

number of such indices increases as shown in Figure–3b. Using

the built-in pgbench tool, we measure throughput on the Y-axis,

and the number of secondary indices created on the X-axis. We

run this pgbench experiment with a DB size of 15GB, a scale fac-
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Figure 4: Performance overhead of introducing new GDPR features in Redis and PostgreSQL. Our evaluation using YCSB shows that Redis
experiences signi�cantly higher ovehead (5×) compared to PostgreSQL (up to 2×).

tor of 1000, and with 32 clients. Just introducing two secondary

indices, for the widely used metadata criteria of purpose and user-
id, reduces PostgreSQL’s throughput to 33% of the original.

Key Takeaways. Introducing GDPR compliance in Redis and Post-
greSQL was not an arduous task: Redis needed 120 lines of code
changes, and Postgres about 30 lines of scripting. We accomplished
all of ourmodi�cations, con�guration changes, andmicrobenchmark-
ing in about a person-month. However, as our microbenchmarks on
TTL and secondary indices show, even for supported GDPR features,
administrators should carefully analyze the impact on their DBMS
deployments.

6. EVALUATION
We evaluate the impact of GDPR on database systems by an-

swering the following questions:

• What is the overhead of GDPR features on traditional work-

loads? (in Section-6.1)

• How do compliant database systems perform against GDPR

workloads? (in Section-6.2)

• How does the scale of personal data impact performance? (in

Section-6.3)

Approach. To answer these questions, we use the GDPR compli-

ant versions of Redis and PostgreSQL described in section-5. Next,

to quantify the performance overhead of GDPR features on tradi-

tional workloads, we use the industry standard Yahoo Cloud Serv-

ing Benchmark [19]. Finally, using GDPRbench, we determine the

state-of-the-art performance levels of our GDPR-compliant Redis

and PostgreSQL against realistic GDPR workloads.

Experimental setup. Weperform all our experiments onChame-

leon cloud [28]. �e database systems are run on a dedicated Dell

PowerEdge FC430 with 40-core Intel Xeon 2.3GHz processor, 64

GB RAM, and 400GB Intel DC-series SSD. We choose Redis v5.0

(released March 18, 2019), PostgreSQL v9.5.16 (released Feb 14,

2019), and YCSB 0.15.0 (released Aug 14, 2018) as our reference

versions.

6.1 Overheads of Compliance
�e goal of this experiment is to quantify the performance over-

head of introducing GDPR compliance. To do so, we use the indus-

try standard YCSB [19]. As shown in Table–3, YCSB comprises of

6 workloads that represent di�erent application pa�erns. For this

experiment, we run YCSB with 16 threads; con�gure it load 2M

records and perform 2M operations in each workload category.

Redis. Figure 4a shows the YCSB workloads on the X-axis and

Redis’ throughput on the Y-axis for each of the newly introduced

Workload Operation Application

Load 100% Insert Bulk DB insert

A 50/50% Read/Update Session store

B 95/5% Read/Update Photo tagging

C 100% Read User pro�le cache

D 95/5% Read/Insert User status update

E 95/5% Scan/Insert �readed conversation

F 100% Read-Modify-Write User activity record

Table 2: YCSB workload pa�erns

GDPR security features. We normalize all the values to a baseline

version of Redis that has no security. First, we see that encryption

reduces the throughput by ∼10%, and our modi�cation towards

achieving timely deletion brings it down by∼20%. Next, we setup
Redis to log all its operations via the AoF mechanism (not syn-

chronously in real-time, but in batches synchronized once every

second), and see the throughput drops by ∼70%. Finally, when all

these features are enabled in tandem, Redis experiences a slow-

down of 80%.

PostgreSQL. Similar to Redis, wemeasure the throughput of Post-

greSQL when con�gured with di�erent security features in Fig-

ure 4b. First o�, we see that the e�ect of GDPR on PostgreSQL

is not as pronounced as in the case of Redis. �is is largely at-

tributable to Redis’sminimalist securitymodel aswell as the single-

threaded design. PostgreSQL experiences 10-20% degradation due

to encryption and TTL checks, while logging incurs a 30-40% over-

head. When all features are enabled in conjunction, PostgreSQL

slows down to 50-60% of its baseline performance.

Summary. While the performance drop is not surprising in itself
since the introduced security measures a�ect all of the read/write
operations, it is the magnitude of the overhead (5× for Redis and
∼2× for PostgreSQL) that makes GDPR compliance debilitating for
production environments.

6.2 GDPR Workloads
While the previous section demonstrated the performance over-

head due to GDPR security features, the goal of this section is to

quantify how the compliant versions of Redis and PostgreSQL per-

form against real-world GDPR workloads. To do so, we con�gure

GDPRbench to load 100K personal records, and perform 1K op-

erations for Redis and 10K operations for PostgreSQL on each of

its four workloads. We use the default proportion of workload

queries and record distributions as speci�ed in Table–2, and run it

with 8 threads. Note how the number of operations is two orders
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Figure 5: Running GDPRbench workloads on GDPR-compliant Redis and PostgreSQL. Despite performing 10K operations, PostgreSQL is faster
than Redis, which is performing only 1K operations for each workload. Enabling metadata indexing in PostgreSQL further reduces its completion
time in (c).

Personal data

size (MB)

Total DB

size (MB)

Space

factor

Redis 10 35 3.5×
PostgreSQL 10 35 3.5×
PostgreSQL w/

metadata indices
10 59.5 5.95×

Table 3: Storage space overhead corresponding to Figure-5. In de-
fault con�guration, GDPRbench has 25 bytes of metadata a�ributes
for a 10 byte personal data record. Our evaluation indicates that in-
troducing secondary indices for all the metadata �elds increases the
storage space overhead from 3.5× to 5.95×.

of magnitude lower than in the YCSB con�guration. �is shows

the challenges of supporting GDPR queries on systems not exclu-

sively built for them.

Redis. Figure–5a shows Redis’ completion time along Y-axis, and

its storage space overhead along Y2-axis. As expected, the proces-

sor workload runs the fastest given its heavy skew towards non-

metadata based operations. In comparison, all other workloads are

2-3× slower, with the controller workload taking the longest. �e

�gure also benchmarks themetadata explosion. In the default con-

�guation, we see a space overhead ratio of 3.5 i.e., for every byte

of personal data inserted, the storage system size increases by 3.5

bytes. Unfortunately, since Redis lacks the support for multiple

secondary indices, we do not show any further optimizations.

PostgreSQL. Next, Figure–5b shows the corresponding baseline

compliance graph for PostgreSQL. Right away, we see that the

completion times are ∼35% faster than Redis for controller and

regulator, and ∼50% faster for the other two workloads, despite

running a workload with 10× more operations. Our pro�ling in-

dicates that PostgreSQL, being an RDBMS, is be�er at supporting

complex queries e�ciently, on top of implementing GDPR secu-

rity features with much less overhead (as discussed in section–6.1.

However, the storage space overhead remains unchanged com-

pared to Redis.

Finally, given the outsized impact of metadata based quries in

GDPRbench, we con�gure PostgreSQL with secondary indices for

all metadata. Figure–5c then shows how this improves PostgreSQL’s

baseline compliance performance. Expectedly, the completion time

improves for all the workloads, though the scale of improvement

is more pronounced for controller workload. �is is primarily be-
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Figure 6: Representative throughput achieved by Redis and Post-
greSQL on YCSB and GDPRbench, under identical conditions. Both
systems perform 2-4 orders of magnitude worse for GDPR workloads
as opposed to traditional workloads.

cause the gain in speed by having secondary indices is annulled

to an extent by the overhead of maintaining several secondary in-

dices. However, adding these extra indices increase the storage

space overhead from 3.5× to 5.95×.
GDPR vs. traditional workloads. In Figure–6, we compare how

Redis and PostgreSQL perform under identical conditions of hard-

ware, so�ware, and con�guration against two workloads: YCSB

and GDPRbench. For traditional workloads represented by YCSB,

both Redis and PostgreSQL achieve throughputs in the range of

10000 operations per second. In contrast, GDPR workloads sign�-

ciantly degrade their performance: by 2-3 orders of magnitude for

PostgreSQL, and by 4 orders of magnitude for Redis.

Summary. GDPRbench re�ects the challenges of supporting GDPR
speci�c workloads on retro��ed compliant systems. While both Re-
dis and PostgreSQL su�er from orders of magnitude degradation in
their performance compared to traditional workloads, our evaluation
shows that feature-rich RDBMS like PostgreSQL performs be�er than
NoSQL stores like Redis.

6.3 Effect of Scale
Finally, we explore how an increase in the scale of data a�ects

the systems. In particular, we structure this experiment to re�ect a

scenario where a company acquires new customers, thus increas-

ing the volume of data in the DB. However, the data of the ex-

isting customers remain unchanged. �is experiment then mea-

sures how Redis and PostgreSQL perform for queries concerning

the orignal set of customers. We lay out experiments in two di�er-

ent contexts: �rst, when the database contains non-personal data,

we run YCSB workloads; second, when the database contains per-
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Figure 7: Time taken by Redis to complete 1K operations as the vol-
ume of data stored in the DB increases. For the traditional workload
in (a), Redis’ performance is only governed by the number of oper-
ations, and thus remains virtually constant across 3 orders of mag-
nitude change in DB size. However, for GDPR workload in (b), the
completion time linearly increases with the DB size.

sonal data, we use GDPRbench customer workload. In both cases,

we scale the volume of data within the database but perform the

same number of operations at every scale. For both GDPR and tra-

ditional workloads, we use identical underlying hardware, same

version of GDPR-compliant Redis and PostgreSQL so�ware, and

retain the same con�guration as in section–6.1.

Redis. For Redis, we populate 100K records and perform 1K op-

erations. First, Figure-7a shows Redis’ completion time for YCSB

workload C. We see that Redis takes almost identical time to com-

plete 1K (read) operations, despite increasing the database volume

by 3 orders of magnitude. �is is not unexpected as Redis supports

e�cient, constant-time CRUD operations.

However, when we switch from traditional workloads to GDPR

workload, Figure-7b paints a di�erent picture. In this graph, we

linearly increase the volume of personal data from 100K to 500K

records, and we see a corresponding linear increase in the com-

pletion time. �is indicates that the completion time is not only

a function of the number of operations but also the size of the

database. In hindsight, this is not completely unexpected as meta-

data based queries require O(n) access, especially in absense of

secondary indices.

PostgreSQL. Finally, we conduct the same scale experiment on

PostgreSQL (metadata-index version) using 100K records and 10K

operations. While PostgreSQL’s performance for YCSB (shown in

Figure-8a) is expectedly similar to that of Redis, its response to

GDPR workload (shown in Figure-8b) is much be�er than that of

Redis. While PostgreSQL is still a�ected by the increase in DB size,

the impact on its performance is muted. Our pro�ling indicates

that this is largely due to secondary indices speeding up meta-

data based queries. But as the DB size increases, the overhead of

maintaining multiple secondary indices does introduce some per-

formance degradation.

Summary. Current generation database systems do not scale well
for GDPR workloads. While PostgreSQL with metadata indexing
fares be�er than Redis, neither of them exhibit a scale response that
make them production ready, especially in environments with large
amounts of personal data.

7. DISCUSSION
Our experiments and analyses identify several implications for

administeringGDPR-compliant database systems in the real world,

as well as research challenges emerging from it. We discuss them

below.
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Figure 8: Time taken by PostgreSQL to complete 10K operations as
the DB size scales. Expectedly, PostgreSQL’s performance reamins
constant for traditional workloads in (a). However, unlike in Redis
(Figure-7a), PostgreSQL’s GDPR performance worsens only moder-
ately thanks to its use of metadata indices.

7.1 Real-world Implications
Compliance results in highperformance overheads. Ourwork
demonstrates that while it is straight-forward to retro�t Redis and

PostgreSQL intoGDPR compliance, the resulting performance degra-

dation of 2-5× (in section-6.1) raises fundamental questions of

compliance-e�ciency tradeo�s. Database engineers and admin-

strators should carefully analyze the performance implications of

any compliance e�orts, especially in production environments.

For instance, recommendations from cloud providers such asAma-

zonWeb Services [49], Microso�Azure [35], andGoogle Cloud [48]

primarily focus on checklist of security features without much at-

tention to their performance implications.

Compliant systems experience challenges at scale. A key

takeaway from our scale experiments (in section-6.3) is that naive

e�orts at achieving GDPR compliance results in poor scalability.

Increasing the volume of personal data, even by modest amounts,

makes it challenging to respond to customer’s GDPR rights in a

timely manner, or even to comply with GDPR responsibilities in

real-time. �us, consideration for scale ought to be an important

factor in any compliance e�ort.

Additionally, GDPR quells the notion that personal data, once

collected, is largely immutable. In light of GDPR’s right to be for-
go�en and right to recti�cation, customers are allowed to exercise

much greater control over their personal data. Consequently, tra-

ditional solutions to scale problems like replication and sharding

would likely incur extra overheads than before. It might be worth

investigating the bene�ts of a GDPR co-processor.

Compliance is easier in RDBMS than NoSQL.We observe that

achieving compliance is simpler and e�ective with RDBMSs than

NoSQL stores. In our case, Redis needed two changes at the in-

ternal design level as opposed to PostgreSQL, which only needed

con�guration changes and external scripting. Even from a perfor-

mance point of view, the drop is steeper in high-performant Redis

as compared to PostgreSQL. We hope our �ndings encourage de-

signers and maintainers of all categories of database systems to

reevaluate their design choices, optimization goals, and deploy-

ment scenarios in the light of privacy regulations like GDPR.

GDPR is strict in principle yet �exible in practice. �ough

GDPR is clear in its high-level goals, it is intentionally vague in its

technical speci�cations. Consider G 17 that requires controllers

to erase personal data upon request by the customer. It does not

specify how soon a�er the request should the data be removed. Let
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us consider its implications in the real world: Google cloud, which

claims GDPR-compliance, describes the deletion of customer data

as an iterative process [4] that could take up to 180 days to fully

complete.

Such �exibility is not unique to the time of completion. Con-

sider G 30 that requires processors to keep an audit trail of interac-

tions with personal data. �e regulation does not specify if the log

data should be stored in a persistent media, or how o�en should

it be updated, or how easily should it be accessible. Similarly, G 32

requires controllers to implement pseudonymization and encryp-

tion without specifying any particular algorithms or techniques

for either. �us, having compliance as a spectrum instead of �xed

targets, allows database engineers and administrators to explore

the tradeo� between strict compliance vs. high performance.

7.2 Research Challenges
Our evaluations show that trivially extending the existingmech-

anisms and policies to achieve compliance would result in signif-

icant performance overheads. We observe two common sources

of this: (i) retro��ing new features when they do not align with

the core design principles. For example, adding to Redis’ minimal-

ist security model, and (ii) using features in ways that are not in-

tended by their designers. For example, enabling continuous log-

ging or multiple secondary indices in production environments.

We identify three key challenges that must be addressed to achieve

compliance e�ciently: e�cient auditing, e�cient time-based dele-
tion, and e�cient metadata indexing.

Another key tussle in the design space is whether to build com-

pliance at the level of individual infrastructure components (i.e.,

compute servers, and database systems) versus implementing end-

to-end compliance of given regulations (i.e., implementing right-

of-access in a music streaming service). Both these directions will

result in di�erent performance tradeo�s and give rise to di�er-

ent system interfaces. �e former approach makes the e�ort more

contained and thus, suits the cloud model be�er (where GDPR ex-

plicitly prohibits selling products and services that do not comply

with its regulations). �e la�er approach provides opportunities

for cross-layer optimizations (e.g., avoiding access control in mul-

tiple layers).

8. RELATED WORK
A preliminary version of this analysis appeared [39] in a work-

shop. To the best of our knowledge, this work is one of the �rst

to analyze the impact of GDPR on database systems. While there

have been a number of recent work analyzing GDPR from pri-

vacy and legal perspectives [34, 25, 47, 13, 44, 17, 45, 22, 27], the

database and systems communities are just beginning to get in-

volved. DatumDB [30] proposes an architectural vision for a database

that natively supports guaranteed deletion and consent manage-

ment. Compliance by construction [38] envisions new database

abstractions to support privacy rights. In contrast, we focus on

the challenges that existing DBMS face in complying with GDPR,

and design a benchmark to quantify its impact.

Orthogonal to our focus, researchers areworking on implement-

ing and analyzing individual GDPR articles end-to-end. For ex-

ample, Google researchers [15] have chronicled their experiences

implementing the Right to be Forgo�en for their search service.

Two groups of researchers from Oxford University analyzed [24,

46] how GDPR’s right to explanation impacts the design of ma-

chine learning and arti�cial intelligence systems. Finally, there is

a wealth of blog posts that describe how to achieve GDPR compli-

ance for popular storage systems including MongoDB [29], Cock-

roachDB [32], and Redis [12].

9. CONCLUSION
�is work analyzes GDPR from a database systems perspective.

We discover the phenomenon of metadata explosion, identify new

workloads of GDPR, and design a new benchmark for quantify-

ing GDPR compliance. We �nd that despite needing to implement

a modest number of changes to storage systems, GDPR compli-

ance results in signi�cant performance overheads. Our analyses

and experiments identify several implications for administering

GDPR-compliant database systems in the real world. We hope that

GDPRbench would be useful for customers, controllers, and regu-

lators in interpreting the compliance level of storage systems, and

helpful for database designers in understanding the compliance-

performance tradeo�.
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