
Tidying Up the Address Space
Vinay Banakar1, 3, Suli Yang3, KanWu2∗, Andrea C. Arpaci-Dusseau1,

Remzi H. Arpaci-Dusseau1, Kimberly Keeton3

1University ofWisconsin-Madison 2xAI 3Google

Abstract
Memory tiering in datacenters does not achieve its full poten-
tial due to hotness fragmentation—the intermingling of hot
and cold objects within memory pages. This fragmentation
preventspage-basedreclamationsystems fromdistinguishing
trulyhotpages frompagescontainingmostly coldobjects, fun-
damentally limitingmemory efficiency despite highly skewed
accesses. We introduce address-space engineering: dynami-
cally reorganizing application virtual address spaces to create
uniformly hot and cold regions that any page-level tiering
backend can manage effectively. HADES demonstrates this
frontend/backend approach through a compiler-runtime sys-
tem that tracks andmigrates objects based on access patterns,
requiringminimal developer intervention. Evaluations across
ten data structures achieve up to 70%memory reduction with
3% performance overhead, showing that address space en-
gineering enables existing reclamation systems to reclaim
memory aggressively without performance degradation.

Keywords: Operating Systems, MemoryManagement, Mem-
ory Tiering, Virtual Address Space, Object Management

ACMReference Format:
VinayBanakar, SuliYang,KanWu,AndreaC.Arpaci-Dusseau,Remzi
H. Arpaci-Dusseau, Kimberly Keeton. 2025. Tidying Up the Address
Space. In 3rdWorkshop on Disruptive Memory Systems (DIMES ’25),
October 13–16, 2025, Seoul, Republic of Korea.ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3764862.3768179

1 Introduction
Memory is the most constrained and costly resource in mod-
ern datacenters, with utilization reaching 60-90% at hyper-
scalers like Google [47] and Meta [38] while driving 50% of
server costs [34]. To control these mounting expenses, oper-
ators adoptmemory tiering to move cold data from expensive
DRAMtoslower, cheaper storage [17, 31, 34, 38].However, the
effectiveness of tiering is fundamentally limited by a semantic

∗Work done at Google

Thiswork is licensedunderaCreativeCommonsAttribution4.0 International
License.
DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2226-4/25/10
https://doi.org/10.1145/3764862.3768179

object

object

Page

Hot Page

object

object

Page

Cold Page

Hotness Fragmented Virtual Address Space

Hotness Organized Virtual Address Space

Figure 1. Address-Space Engineering. Hotness fragmen-
tation (top) intermixes hot (red) and cold (blue) objects, making
pages difficult to reclaim. Address-space engineering (bottom)
reorganizes objects into uniformly hot and cold regions, enabling
efficient page-level management.
gap between applications and the operating system. Applica-
tions operate on fine-grained data objects, while the OS man-
ages memory in coarse-grained pages. This mismatch causes
frequently accessed (hot) and infrequently accessed (cold) ob-
jects to become intermingled on the same pages—a problem
we term hotness fragmentation. This fragmentation cripples
page-level reclamation, as even a single hot object on a page
prevents the entire page from being safely moved to a slower
tier without risking performance-degrading page faults.

Existing systems do not address the root cause of this prob-
lem. Page-level reclamation systems like the kernel’s kswapd,
Google’s zswap [30], or Meta’s TMO [49] are powerful but
ignorant; they can only identify pages as hot or cold, not
the objects within them, and thus cannot distinguish a truly
hot page from a mostly-cold one. Allocation-time hinting ap-
proaches [27] are too static, making a one-time placement de-
cision that cannot adapt as an object’s access patterns change
over its lifetime. While more radical object-level tiering sys-
tems [22, 44] offer fine-grained control, they impose high
adoption costs by requiring significant application modifica-
tions and direct hardware access. Therefore, what is needed is
a system that provides object-level awareness to guide page-
level decisions, without abandoning the abstractions that
make existing systems practical.

We propose address-space engineering: instead of mak-
ing theOS object-aware, we engineer the application’s virtual
address space to be OS-tiering-friendly, adapting to workload
access patterns.While garbage-collected languages have long
employedobject reorganization for locality [13, 25, 26, 50], un-
managed languages like C++ present unique challenges due

https://doi.org/10.1145/3764862.3768179
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3764862.3768179


DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea V. Banakar, Y. Suli, K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, K. Keeton

to the assumption that allocation-time decisions are final [9].
The key insight is to challenge this assumption for pointer-
based data structures while preserving the language’s seman-
tic guarantees. As shown in Figure 1, this approach "tidies up"
the fragmented address space by dynamically identifying and
migratingobjects basedon their accesspatterns, transforming
a fragmented layout, where hot and cold data are mixed, into
a cleanly organized one, where objects are grouped by their
access temperature. This continuous, dynamic engineering of
the virtual address space is the key to bridging the semantic
gap between application objects and OS pages.
Dynamic reorganization enables a powerful architectural

principle: decoupling object-level placement from page-level
reclamation. We propose a model with a frontend system
responsible for making object placement decisions and a
backend responsible for managing the underlying pages. The
frontend provides the backend with an address space con-
taining uniformly hot or cold regions, making the backend’s
job easier: it can confidently reclaim entire cold regions or
promote hot regions to huge pages. This architecture achieves
the intelligence of an object-level system while retaining the
compatibility and simplicity of existing page-level systems.
In this paper, we present Hierarchically Aware Data

structurES (HADES), a compiler-runtime system that re-
alizes this frontend/backend vision for pointer-based data
structures in non-managed languages. HADES transparently
tracks object-level access intensity and uses a safe, lock-free
protocol to migrate objects between hot and cold heaps. We
demonstrate that by adding a HADES frontend to standard
reclamation approaches like kswapd and proactive reclama-
tion, we can reduce memory usage by up to 70% on YCSB
workloads with minimal performance degradation (3-5%).
This work makes the following contributions: (1) a decou-
pled frontend/backend model for memory tiering based on
dynamicobject reorganization; (2) thedesignand implementa-
tion ofHADES, an object-level frontend; and (3) an evaluation
demonstrating that this model allows existing, unmodified
backends to reclaimmemory far more effectively.

2 Semantic Gap inMemoryManagement
Real-world workloads exhibit highly skewed access patterns,
with large portions of datasets remaining untouched [10, 35]
or accessed only once [52]. Modern allocators [19, 54] opti-
mize for allocation speed and spatial fragmentation reduction,
making placement decisions at allocation time without con-
sidering future access patterns. Meanwhile, Linux’s memory
reclamation system operates at page granularity, using access
bits in page table entries to track activity. This fundamental
mismatch scatters frequently accessed objects acrossmemory
pages, intermixing themwith rarely accessed data and creat-
ing a semantic gap between application-level object access
and OS-level page management.
From amemory tiering perspective, the core inefficiency

arises from the fragmentation of large regions of cold data by

Figure 2. Page Utilization. Redis, Memcached, andMongoDB
Page Utilization for 360s epochs running a YCSB-C (read-only)
workload with a Zipfian distribution. A small fraction of bytes per
page are accessed, and more pages are touched than necessary.
a few hot objects, which makes entire pages unreclaimable.
This intermingling of hot and cold objects within the same
pages is a problemwe term hotness fragmentation. To quantify
the extent of hotness fragmentation, we introduce the metric
Page Utilization. Page Utilization is defined as the ratio of
unique accessed bytes to the total size of accessed pages over
a specific time period T:

𝑃𝑎𝑔𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑇 )= 𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑖𝑞𝑢𝑒𝐵𝑦𝑡𝑒𝑠 (𝑇 )
𝑈𝑛𝑖𝑞𝑢𝑒𝑃𝑎𝑔𝑒𝑠 (𝑇 )×𝑃𝑎𝑔𝑒𝑆𝑖𝑧𝑒

A low Page Utilization value serves as a strong indicator of
this problem: it signifies that only a small fraction of the bytes
on an accessed page are actually being used. This forces the
entire page to remain resident in the faster memory tier, trap-
ping the large volume of co-located, un-accessed (and likely
cold) data on the same page.

Our investigations reveal consistently low Page Utilization
across diverse systems and workloads. Using PinTool [1] to
track memory access patterns in popular key-value stores
running YCSB workloads [15], we found that 75% of accessed
pages in Redis utilize just 3% or less of their capacity, while
90% of pages in MongoDB andMemcached use less than 15%
(Figure 2). This scattered placement creates an illusion of high
memory activity when only a small fraction of bytes receives
regular access, directly constraining the effectiveness of any
page-based reclamation system.
The issue of non-uniform access within larger memory

granularities iswell-established. Cache prefetching studies [7,
28, 45], using techniques like spatial footprint bitmasks [7, 28]
and block access counts per region [45], have consistently re-
vealed that only a fraction of data within multi-kilobyte gran-
ularities is often hot. These studies confirm that fine-grained
access locality exists, but their block-level metrics are primar-
ily designed to identify specific cache blocks for prefetching.

To assess the impact of this fine-grained skew on OS-level
memory tiering, we use Page Utilization. This metric quanti-
fies the byte-level efficiency within the set of all unique OS
pages touched, not just within a prefetch-specific region. By
calculating the ratio of unique bytes accessed to the total size
of these pages, Page Utilization directly measures the mem-
ory wasted due to "hotness fragmentation"—where sparsely
located hot objects force entire pages to remain in the fast tier.



Tidying Up the Address Space DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea

Unlike metrics aimed at prefetch accuracy, low Page Utiliza-
tion serves as a direct proxy for the reclaimability challenges
faced by page-based memory management, highlighting the
potential benefits of improving the access uniformity of pages.

Penalties of Poor PageUtilization. Memory reclamation
in modern operating systems requires completely cold pages,
as even a single active object prevents the entire page from
being swapped out. Figure 3 illustrates this problemwith Re-
dis running a YCSB-C workload, where despite requiring 1.2
GiB of residentmemory, Redis actively touches only∼0.5MiB
of cache lines. Most pages contain at least one hot object but
remain mostly unused, creating vast regions of theoretically
reclaimable memory that current systems cannot efficiently
recover. This leads to our observation #1: improving Page
Utilization increases reclaimablememory by reducing
the number of pages needed to serve skewedworkloads.
Poor Page Utilization significantly impacts CPU perfor-

mance by forcing hot objects to scatter across virtual address
space. Processors must perform frequent TLB lookups and
page table walks even for cache-friendly workloads, with
TLBmisses requiring 150-600 cycles compared to 4-cycle hits.
At Google, 11% of fleet CPU cycles are consumed by dTLB
load misses [54]. While transparent huge pages reduce TLB
pressure, applying them indiscriminately increases memory
footprint by up to 69% [29]. Object grouping creates dense
regions ideal for targeted huge page promotion, preserving
TLB efficiencywithoutmemory bloat. This leads to ourobser-
vation #2: improving Page Utilization enables targeted
huge page promotion, preserving CPU cycles without
sacrificing reclaimablememory.

Poor address space layout forces datacenter infrastructure
waste through memory overprovisioning and CPU underuti-
lization. Operators must spread jobs with small working sets
but large allocation footprints across multiple machines to
avoid CPU stranding [47], even when actual memory needs
are much smaller than allocated. With DRAM accounting for
50%of server costs [34] andproducing 12xmore emissions per
bit thanSSDs [39], reorganizing the address spacebyobject ac-
cess patterns creates a foundation for bothmemory efficiency
andCPUoptimization. This leads to our observation #3: bet-
teraddress space layoutenablesbothefficienthugepage
usageandmemoryreclamation, allowing stable skewed
workloads to run on fewer machines for more cost-
effective and environmentally sustainable datacenters.

3 Workload-Optimized Address Space
The semantic gap between object-level allocation and page-
level management demands a new approach to organizing
the virtual address space. Instead of treating memory layout
as a static side-effect of allocation, a system can dynamically
engineer it to match workload behavior. This section outlines
the core principles for designing such a system.

Figure 3. UnreclaimableMemory. YCSB-C with Zipfian dis-
tribution running on Redis showsmemory used (RSS), pages needed
(Touched Pages), and cachelines needed (Touched Cachelines). Only
0.5 MiB of actual data is required whereas 1.2 GiB remains resident.
The gap represents theoretically reclaimable memory that current
systems cannot efficiently recover.
3.1 Enabling Object Mobility
Thefirst challenge in reorganizing the address space is that ap-
plications written in unmanaged languages like C++ assume
object addresses are fixed after allocation. To enable dynamic
reorganization, a systemmust be able to move objects with-
out violating this stability assumption from the application’s
perspective. Themost practicalway to achieve this is to focus
on pointer-based data structures,where data is accessed
through pointers rather than by arithmetic offsets. By inter-
cepting pointer dereferences, a system can track and update
pointers when an object moves, making the relocation trans-
parent to the application.This approach requiresnocodemod-
ifications from the developer, as it works directly with objects
allocated via new or malloc. This approach must be safe in a
highly concurrent environment, requiring a lock-free mech-
anism that guarantees correctness without acquiring coarse-
grained locks. This ensures forward progress at all times and
compatibility with the full spectrum of concurrency models,
from simple locking to sophisticated lock-free algorithms.
Applying this principle is fundamentally harder in C++

than in managed environments like Java or .NET. Managed
runtimes have built-in moving garbage collectors that pro-
vide the machinery to safely relocate objects [13, 26]. They
can pause application threads at well-defined "safe-points"
to scan the heap and atomically update all references to a
moved object. C++ offers no such infrastructure. Therefore,
the challenge is not the idea of moving objects, but intro-
ducing a mechanism to do so safely and concurrently in a
non-cooperative environment. A systemmust be able to re-
locate an object while other threads may be actively trying
to access it, without a "stop-the-world" pause and without
breaking language semantics.

3.2 Grouping Objects by Access Intensity
Once objects can be moved safely, the system needs a policy
to guide their placement. Relying on static, allocation-time
placement [5, 14, 16] is insufficient, as individual objects fol-
low their own unique access trajectories—some remain hot
throughout their lifetime, others cool down quickly after ini-
tialization, and many transition between hot and cold states



DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea V. Banakar, Y. Suli, K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, K. Keeton

as application phases change. An effective approach is to dy-
namically group objects based on their observed access
intensity, a technique explored in managed runtimes for
improving CPU cache locality [13, 26]. The systemmonitors
which objects are accessed over time, allowing it to differen-
tiate between hot (active) and cold (inactive) data at runtime.
This allows the system toadapt to shiftinghot sets andapplica-
tion phase changes without prior knowledge of the workload.

This grouping creates an address space layout that directly
supportsmemory efficiency.Hot objects are consolidated into
dense regions,making them ideal candidates forhugepages to
improveTLBperformance.Coldobjects are clustered together
into separate regions, creating uniformly cold pages that can
be easily identified and reclaimed. Crucially, the mechanism
for tracking this activitymust have very lowoverhead. Unlike
heavyweight profilers or dynamic instrumentation tools, a
production-ready solution requires a lightweight mechanism
tomonitor object accesses without impacting application per-
formance. Bygroupingobjects basedon their actual usage, the
system organizes the address space to reflect the workload’s
true temporal access patterns.

3.3 Decoupling Layout fromReclamation
The final principle is to decouple object-level placement
from page-level reclamation to best leverage existing OS
mechanisms. This separation establishes a frontend system
that organizes the virtual address space and a back-end policy
that acts upon it. The front-end’s responsibility is to group ob-
jects by access intensity, creating regions of uniformly hot or
cold pages. It provides an address space layout that is affable
for any reclamation policy to act upon,whether that back-end
is the kernel’s kswapd or a user-space agent like TMO.
This separation makes existing back-ends more effective

even with simple page placement policies. When a back-end
is presented with a page from a cold region, it no longer has
to guess whether the page contains hidden hot objects; the
front-end’s organization provides a strong guarantee of its
temperature. This allows reclamation policies to act more
decisively and reclaimmore memory without risking perfor-
mance degradation from unexpected page faults. This decou-
pled design enables independent innovation: front-ends can
improve their tracking and placement algorithms, while back-
ends can evolve to support new hardware like CXLmemory
[8, 18, 36, 46], all without requiring changes to the other layer.

4 HADES
HADES is a compiler-runtime co-design that implements
the front-end role described in Section 3. As shown in Fig-
ure4, itworks seamlesslywithexistingpage-level reclamation
back-ends by providing them with an address space that is
already organized by access activity. HADES monitors object
access patterns and dynamically reorganizes the virtual ad-
dress space, grouping recentlyaccessedobjects togetherwhile

Frontend (HADES): Object Placement Decisions

Backend: Page Placement Decisions

Trees Hash Tables Skip Lists

allocation

HOT REGION COLD REGION

Object Object

DRAM      SSD/CXL Memory

Page

Virtual Address Space

Page

Figure 4. HADES Overview. As a front-end, HADES makes
object placement decisions to organize the virtual address space into
hot and cold regions. This enables any back-end to make more effec-
tive page placement decisions between DRAM and tiered storage.

segregating rarely accessed ones. While HADES requires no
changes to application logic, developers provide a one-time
annotation to indicate which pointer-based data structures
should be managed, enabling fine-grained optimization with-
out altering program semantics.
Tracking andGroupingObjects. To implement the princi-
ple of grouping objects by access intensity (§3.2), HADES first
needs a low-overhead way to track access. Modern 64-bit pro-
cessors leave high-order address bits unused, which HADES
repurposes to store metadata directly within pointers [4]. It
uses these "tagged pointers," or guides, to atomically set an
access bit upon dereference, minimizing overhead by skip-
ping the update to the access bit if it is already set. A runtime
component, the Object Collector, periodically scans a sparse
bitmap referencing all managed objects to read these access
bits. Based on this information, it groups objects into three
distinct heaps: a NEWheap for initial allocations, a HOTheap
for frequently accessed objects (placed on huge pages), and
a COLD heap for inactive objects targeted for reclamation
(Figure 5). A custom memory allocator ensures these heap
regions are contiguous, enabling efficient madvise operations
to form hugepages or page out the entire regions.
Safe Concurrent Migration. To enable object mobility
(§3.1), HADESmust relocate objects without locks or appli-
cation stalls. The key insight is to track an object’s active use
in real time, rather than its lifetime. HADES embeds a small
ActiveThreadCount (ATC) in each guide’s unused bits,which
counts the number of threads currently executing within a
function that accesses the object. To manage these counts ef-
ficiently, compiler-inserted scope guards automatically incre-
ment the ATC at the start of a function and decrement it upon
exit. This entire tracking mechanism is selectively activated
using an epoch-based protocol only when migration is occur-
ring, eliminating overhead during normal execution [11, 20].
During a migration window, the system can safely move any
object with an ATC of zero using an optimistic approach.



Tidying Up the Address Space DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea

Figure 5. Object Migration State Diagram. An object starts
in NEW heap and migrates to HOT or COLD based on access pat-
terns and if itsConsecutive InactiveWindows (CIW) is greater than a
threshold (𝐶𝑡 ), with heap properties adjusted throughmadvise flags.

AdaptiveWorkloadResponse. Fixed thresholdmigration
policies are brittle and cannot adapt to changing workloads.
HADES therefore employs a dynamic feedback loop to adjust
its reclamation aggressiveness. It monitors the "promotion
rate" [30] -— the rate at which applications access data from
the COLD heap, which serves as a proxy for page-fault pres-
sure. If this rate exceeds a configurable performance target
(e.g., 1%), it suggests the system is being too aggressive. In re-
sponse,we adapt concepts fromTCP congestion control [6] to
introduce a multiplicative increase/additive decrease (MIAD)
strategy, which makes it harder for objects to be demoted.
Initially, cold pages are marked with MADV_COLD for reactive
reclamation; the system only transitions to proactive MADV_-
PAGEOUT once the promotion rate is safely below the target.
Backend Integration. HADES validates the principle of de-
coupling layout fromreclamation (§3.3) byenhancingexisting
page-level mechanisms without modifying them. The Object
Collector produces uniformly cold regions that kernel mech-
anisms like kswapd, TPP [38], or HeMem [43] can migrate
with high confidence. As shown in Sec. 5, this architectural
separation allows backends to operate more effectively, val-
idating our proposed paradigm where a frontend provides
object-level intelligence and the backend manages memory
using its established policies.

5 Evaluation
We evaluate HADES as a frontend that reorganizes address
spaces to work with existing memory management back-
ends. Our experiments demonstrate that object-level tempo-
ral tracking eliminates hotness fragmentation while enabling
unmodified page-level reclamation systems to achieve both
memory savings and performance preservation.
Setup. We evaluate HADES’ effectiveness using ten popu-
lar pointer-based data structures with diverse concurrency
mechanisms (Table 1), borrowed fromASCYLIB [21]. For con-
sistent testing, we develop CrestDB, a lightweight concurrent
key-value store that can use any of these structures as its
backend. Experiments were conducted on an Intel Xeon Gold
5218 CPU (16 cores), 32GB DRAM, and a 512GB Intel P4800x
SSD for swaponUbuntu 22.04. Each test ran six server threads
and six client threads to stress concurrent access patterns.

Structure Concurrency Control Used In
HashTable Harris [23] Lock-free algorithm NGINX
HashTable Pugh [42] Fine-grained r/w lock Redis, Memcached
HashTable Java CHM [3] Segmented bucket locks Linux kernel, HAProxy
SkipList Coarse Global lock LevelDB/RocksDB
SkipList Fraser [20] Lock-free algorithm Redis Sorted Sets
SkipList Herlihy [24] Optimistic fine-grained Cassandra, CockroachDB
B+Tree Coarse Global lock SAP HANA
B+Tree OCC OCCw/ epoch reclaim VoltDB index
MassTree [37] OCC + RCU LMDB
Adaptive Radix Tree [32] Fine-grained r/w lock DuckDB, PostgreSQL

Table 1. Concurrent data structures evaluated with HADES
5.1 Frontend Effectiveness on YCSBWorkloads
We tested our key-value interface against three YCSB work-
loads using zipfian distributions that scatter hot keys through-
out the entire key space, creating realistic access skew unlike
YCSB’s default hot key concentration patterns [10, 12, 51].
Each experiment loads 10MKVpairswith 30Bkeys and 1024B
values to demonstrate address space optimization effective-
ness across diverse data structure implementations.

HADES increases page utilization from 18-20% to substan-
tially higher levels through object grouping across all data
structure types. Once the system completes its initial object
classification phase, it achieves 2x improvement for work-
load A, 3x for workload B, and 4x for workload C (Figure 6(a)).
Read-onlyworkloadC reaches 80%pageutilization asHADES
migrateshotobjects todedicated regionswithout interference
from new allocations, while update-heavy workloads show
lower improvements because new value allocations initially
appear in the NEW heap. The consistent improvement across
all ten data structures—from simple hash tables to complex
B+Trees with different concurrency mechanisms—confirms
that object-level tracking eliminates hotness fragmentation
regardless of the underlying index implementation or syn-
chronization approach.
The frontend identifies and reclaims cold memory effec-

tively across all workloads and data structure types. Fig-
ure 6(b) shows HADES reduces memory usage by up to 70%
through object-level cold identification and heap organiza-
tion. When promotion rates reach target levels indicating
accurate cold classification, HADES transitions frommarking
pageswithMADV_COLD to issuingMADV_PAGEOUT for proactive
reclamation. This object-level reorganization enables precise
working set identification that creates uniformly cold pages
suitable for safe reclamation without performance risks.
HADES introduces 2.5% average throughput reduction

and 5% latency increase from tracking instrumentation over-
head. Performance impact varies bydata structure complexity,
with hash tables showing lower overhead than skiplists and
B+Trees due to differences in traversal patterns and key com-
parison requirements (Figure 6(c)). Access bit operations con-
sume 4-5 ns (comparable to L1 cache hits), while the primary
overhead occurs during scope guard operations requiring
O(logN) complexity for tracking first-time object observa-
tions. Themodest overhead across diverse concurrencymech-
anisms demonstrates that object-level tracking remains prac-
tical regardless of the underlying synchronization approach.



DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea V. Banakar, Y. Suli, K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, K. Keeton

(a) Page Utilization Improvement.
After HADESmigrates objects,

utilization increases for read-heavy workloads;
by up to 84% and 40-60% for workloads A and B.

(b) Memory Usage. HADES identifies cold
objects and reclaims their pages, reducing mem-
ory usage by up to 70% for all three workloads.

(c) Performance Impact Run-A.
HADES incurs throughput and latency
degradation due to ATC instrumentation,
varying by data structure complexity.

Figure 6. CrestDB with YCSB. HADES effects on page utilization, memory usage, and performance across YCSB workloads A (50%
writes), B (5% writes), and C (read-only) under a zipfian distribution.

Figure 7. CrestDB vs. Baselines on YCSB-C. HADES
resolves the trade-off between performance and memory savings.
Standard backends must either sacrifice performance to save
memory (Cgroup hotset) or sacrifice memory savings to preserve
performance (kswapd). By providing an organized address space,
HADES enables both reactive (HADES w/ Cgroup hotspot) and
proactive (HADES Proactive) reclamation to achieve maximum
memory savings with no performance degradation.

5.2 Backend Integration Validation
We demonstrate that HADES enables existing backends to
achieve both memory savings and performance preservation
by running YCSB-C with a 12GB footprint while actively ac-
cessing only ∼4GB. Traditional systems force operators to
choose between aggressive reclamation that degrades per-
formance and conservative approaches that waste memory.
HADES eliminates this trade-off by providing backends with
uniformly cold pages that reclaim without affecting hot data.
Figure 7 reveals the fundamental limitation of page-level

backends operating on poorly organized address spaces. The
memory-saving-first approach (green line) sets cgroup lim-
its to 4GB, achieving target memory usage but causing 50%
latency increase and 30% throughput degradation from ag-
gressive reclamation of pages containing hot objects. The
performance-firstapproach (blue line) createspressure through

background applications (allocates 25 GB), preserving perfor-
mancebutachievingpoormemorysavingswithusage remain-
ingaround6GBrather than the4GBtarget.Bothbackends face
thesameconstraint: page-levelgranularitycannotdistinguish
truly hot pages from those containing scattered hot objects.

HADES transforms the same backends from facing painful
trade-offs to achieving both objectives simultaneously. The
reorganized address space enables kswapd to reduce memory
usage to 4GB without performance degradation (dashed red
line) because the COLD heap contains uniformly cold objects
safe for reclamation. Proactive reclamation through madvise
achieves identical results (solid red line), demonstrating that
multiple backend approaches benefit from frontend organi-
zation. The backend integration validates that object-level
intelligence creates conditions where page-level mechanisms
operate effectively without modification.

6 Limitations
HADES optimizes the placement of managed objects in the
virtual address space to achieve better page utilization, which
enables proactive memory reclamation and improved TLB
efficiency.Despite these advantages,HADES faces several lim-
itations that affect its applicability across different scenarios.

• Lack of pointer stability: HADES invalidates cached
pointers bymoving objects across memory, requiring users
to query keys and values each time rather than caching
pointers. This mirrors constraints in Abseil containers [2]
andSTLstructures likestd::vectorandstd::deque,which
similarly don’t guarantee pointer stability.

• Unique Object Ownership:When a pointer is annotated
for HADES management, users implicitly assert that it has
exclusive access control over the object. This unique owner-
ship model, akin to std::unique_ptr semantics, is essen-
tial for safe object migration, as HADES only updates the
address via the annotated pointer. This model aligns with
the internal object management within the kinds of con-
current data structures evaluated (see Table 1), which are
fundamental to various systems like databases, in-memory
caches, and web servers. These structures naturally create



Tidying Up the Address Space DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea

unique ownership paths for their elements or nodes. Ob-
jects shared and accessed through multiple aliases cannot
be safely managed by HADES.

• Incompatibilitywithpointerarithmetic:HADESplaces
objects across multiple heaps without maintaining contigu-
ous placement, eliminating implicit ordering guarantees
andmaking it unsuitable for data structures like arrays and
matrices that require contiguous memory.

• Language support restrictions:HADES onlyworkswith
languages supporting operator overloading (C++, Rust) to
intercept access during pointer dereferencing. Languages
without this capability (Go, Java) cannot implement this
approach, though they might enable direct object manage-
ment through garbage collection.

• Requirement for explicit annotations: Users must des-
ignatewhich objectsHADESmanages,which is straightfor-
ward in key-value stores but perhaps challenging in more
complex scenarios. Determining automatic management
candidacy falls outside this work’s scope.

7 RelatedWork
Object-LevelManagement. Recent works like AIFM [44]
and MIRA [22] operate at object granularity but focus ex-
clusively on far-memory over RDMA, requiring direct hard-
ware access that limits production adoption. Alaska [48] uses
handle-based indirection to reduce RSS through heap com-
paction, addressing fragmentation reactively without object
hotness classification.HADES takes a fundamentallydifferent
approach by proactively reshaping the virtual address space
through temporal access tracking, creating tiering-friendly
object clusters that bridge the gap between application-level
object access and page-level OS memory management. This
organization of objects across specialized heaps based on ac-
cess frequency enables HADES to work effectively with exist-
ing OS reclamation mechanisms while adapting to changing
workload characteristics.

Runtime vs. Allocation-Time Placement.Allocation-
time hinting approaches [14, 16, 27, 40, 54] fail to capture
objects transitioning between hot and cold states or distin-
guish between objects from the same allocation site with
different access patterns. Systems like PGHO [27] can apply
hints automatically based on profile data for allocators like
TCMalloc [54], but still make placement decisions only at al-
location time. These instrumentation-based profile collection
solutions are too slow for production workloads and rely on
representative workloads that are often unavailable. HADES
instead tracks access patterns at runtime, enabling migration
based on actual usage rather than static predictions.

Page-LevelOptimizations. Incontrast toHADES’sobject-
level address space reorganization, several systems optimize
memory tiering and efficiency at the page level. For instance,
Johnny Cache [33] manipulates physical page allocation to
minimize address conflicts in the hardware sets of direct-
mapped DRAM caches. Similarly, Memstrata [53] manages

host physical page mappings in virtualized environments to
isolate tenants and optimize performance within Intel Flat
Memory Mode, where hardware tiers cachelines between lo-
cal DRAM and CXL memory. These systems improve how
pages interact with the underlying cacheline-granular hard-
ware, but they treat the page contents as opaque. HADES’s
approach is orthogonal, as it ensures the cache lines within
each virtual page are more uniformly hot or cold, making the
hardware’s tiering decisions more effective.
Approaches also exist for page-level decisions about tier-

ing and page size. HawkEye [41] improves huge page man-
agement through fine-grained page-level access tracking for
better TLB utilization. Memtis [31] dynamically determines
page tier placement and page size in heterogeneous mem-
ory systems. Based on the access skew within huge pages
detected via hardware sampling, Memtis decides whether to
split a huge page into smaller base pages, migrating only the
hot subpages to the fast tier, thus balancing tiering benefits
against address translation costs. While Memtis optimizes
page sizes and placement, it still operates at the page level.
If a base page still contains a mix of hot and cold objects,
Memtis cannot separate them. HADES, by organizing objects,
ensures that pages are more likely to be homogeneously hot
or cold, potentially improving the effectiveness of systems
like Memtis, Johnny Cache, and Memstrata.

8 Conclusion
We demonstrate that the key to efficient memory tiering in
non-managed languages lies not in altering the OS, but in
engineering the application’s virtual address space to be OS-
friendly.We introduced a decoupled frontend/backendmodel
where an object-level frontend dynamically reorganizes the
address space to create uniformly hot and cold regions, en-
ablinganystandardpage-level backend to reclaimmemory far
more effectively. HADES realizes this vision by introducing
novel, lock-free techniques to safely migrate objects in a con-
current environment. By resolving hotness fragmentation at
its source, HADES allows standard backends to reduce mem-
ory usage by up to 70% without the performance trade-offs
that have made aggressive memory tiering impractical.

Acknowledgments
We thank David Culler, Lilian Tsai, Qian Ge, Teresa Johnson,
colleagues in SystemsResearch@Google, the anonymous re-
viewers, and our shepherd, Antonio Barbalace, for valuable
feedback on earlier drafts of this manuscript.

References
[1] 2024. Pin - A Dynamic Binary Instrumentation Tool. https:

//www.intel.com/content/www/us/en/developer/articles/tool/pin-a-
dynamic-binary-instrumentation-tool.html

[2] 2025. Abseil Pointer Instability. https://abseil.io/docs/cpp/guides/
container#fn:pointer-stability

[3] 2025. Overview of Package util.concurrent. https://gee.cs.oswego.
edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://abseil.io/docs/cpp/guides/container#fn:pointer-stability
https://abseil.io/docs/cpp/guides/container#fn:pointer-stability
https://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
https://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html


DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea V. Banakar, Y. Suli, K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, K. Keeton

[4] 2025. Tagged Pointers. https://en.wikipedia.org/wiki/Tagged_pointer.
[5] 2025. TCMalloc Leveraging hot/cold hints.

https://google.github.io/tcmalloc/temeraire.html#leveraging-hotcold-
hints.

[6] 2025. TCP Additive increase/multiplicative decrease. https:
//en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease

[7] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-
Kamran, and Hamid Sarbazi-Azad. 2019. Bingo Spatial Data Prefetcher.
In 2019 IEEE International SymposiumonHighPerformanceComputerAr-
chitecture (HPCA). 399–411. https://doi.org/10.1109/HPCA.2019.00053

[8] Vinay Banakar, Kan Wu, Yuvraj Patel, Kimberly Keeton, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2023. WiscSort:
External Sorting for Byte-Addressable Storage. Proc. VLDB Endow. 16,
9 (May 2023), 2103–2116. https://doi.org/10.14778/3598581.3598585

[9] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley.
2004. Myths and realities: the performance impact of garbage
collection. SIGMETRICS Perform. Eval. Rev. 32, 1 (jun 2004), 25–36.
https://doi.org/10.1145/1012888.1005693

[10] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). USENIX Association, Santa Clara, CA, 209–223.
https://www.usenix.org/conference/fast20/presentation/cao-zhichao

[11] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin
Levandoski, James Hunter, and Mike Barnett. 2018. FASTER: A
Concurrent Key-Value Store with In-Place Updates. In Proceedings of
the 2018 International Conference on Management of Data (Houston,
TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 275–290. https://doi.org/10.1145/3183713.3196898

[12] Jiqiang Chen, Liang Chen, ShengWang, Guoyun Zhu, Yuanyuan Sun,
Huan Liu, and Feifei Li. 2020. HotRing: A Hotspot-Aware In-Memory
Key-Value Store. In 18thUSENIXConference on File and Storage Technolo-
gies (FAST 20). USENIX Association, Santa Clara, CA, 239–252. https:
//www.usenix.org/conference/fast20/presentation/chen-jiqiang

[13] Wen-ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xiaofeng Gao, and
Weihaw Chuang. 2006. Profile-guided proactive garbage collection
for locality optimization. SIGPLAN Not. 41, 6 (June 2006), 332–340.
https://doi.org/10.1145/1133255.1134021

[14] Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren. 2020. ATMem:
adaptive data placement in graph applications on heterogeneous
memories. InProceedings of the 18thACM/IEEE International Symposium
on Code Generation and Optimization (San Diego, CA, USA) (CGO 2020).
Association for Computing Machinery, New York, NY, USA, 293–304.
https://doi.org/10.1145/3368826.3377922

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. 2010. Benchmarking cloud serving
systems with YCSB. In Proceedings of the 1st ACM Symposium on
Cloud Computing (Indianapolis, Indiana, USA) (SoCC ’10). Asso-
ciation for Computing Machinery, New York, NY, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[16] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data tiering in heterogeneous memory systems.
In Proceedings of the Eleventh European Conference on Computer
Systems (London, United Kingdom) (EuroSys ’16). Association for
Computing Machinery, New York, NY, USA, Article 15, 16 pages.
https://doi.org/10.1145/2901318.2901344

[17] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela
Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg
Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ranganathan, and
Amin Vahdat. 2023. Towards an Adaptable Systems Architecture for
Memory Tiering atWarehouse-Scale. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 727–741. https://doi.org/10.1145/3582016.3582031

[18] Pouya Esmaili-Dokht, Francesco Sgherzi, Valeria Soldera Girelli,
Isaac Boixaderas, Mariana Carmin, Alireza Monemi, Adria Armejach,
Estanislao Mercadal, German Llort, Petar Radojkovic, Miquel Moreto,
Judit Gimenez, Xavier Martorell, Eduard Ayguade, Jesus Labarta,
Emanuele Confalonieri, Rishabh Dubey, and Jason Adlard. 2024. A
Mess of Memory System Benchmarking, Simulation and Application
Profiling . In 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, Los Alamitos, CA,
USA, 136–152. https://doi.org/10.1109/MICRO61859.2024.00020

[19] Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In Proc. of the bsdcan conference, ottawa, canada.

[20] Keir Fraser. 2003. Practical lock-freedom. https://api.semanticscholar.
org/CorpusID:11933396

[21] Rachid Guerraoui and Vasileios Trigonakis. 2016. Optimistic concur-
rency with OPTIK. SIGPLAN Not. 51, 8, Article 18 (Feb. 2016), 12 pages.
https://doi.org/10.1145/3016078.2851146

[22] Zhiyuan Guo, Zijian He, and Yiying Zhang. 2023. Mira: A Program-
Behavior-Guided Far Memory System. In Proceedings of the 29th
Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP
’23). Association for Computing Machinery, New York, NY, USA,
692–708. https://doi.org/10.1145/3600006.3613157

[23] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking
Linked-Lists. In Proceedings of the 15th International Conference on
Distributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg,
300–314.

[24] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007.
A simple optimistic skiplist algorithm (SIROCCO’07). Springer-Verlag,
Berlin, Heidelberg, 124–138.

[25] Mark D. Hill, James R. Larus, and Trishul M. Chilimbi. 2000. Making
Pointer-Based Data Structures Cache Conscious . Computer 33, 12
(Dec. 2000), 67–74. https://doi.org/10.1109/2.889095

[26] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley,
J Eliot B. Moss, Zhenlin Wang, and Perry Cheng. 2004. The garbage
collection advantage: improving program locality. SIGPLAN Not. 39,
10 (Oct. 2004), 69–80. https://doi.org/10.1145/1035292.1028983

[27] Teresa Johnson, Snehasish Kumar, , and David Li. 2021. RFC: IR
metadata format for MemProf. https://groups.google.com/g/llvm-
dev/c/aWHsdMxKAfE/m/WtEmRqyhAgAJ

[28] Sanjeev Kumar and Christopher Wilkerson. 1998. Exploiting spatial
locality in data caches using spatial footprints. In Proceedings of
the 25th Annual International Symposium on Computer Architecture
(Barcelona, Spain) (ISCA ’98). IEEE Computer Society, USA, 357–368.
https://doi.org/10.1145/279358.279404

[29] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page Man-
agement with Ingens. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, Savannah,
GA, 705–721. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/kwon

[30] H. Andrés Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agar-
wal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule,
NanDeng, Junaid Shahid, GregThelen, Kamil AdamYurtsever, YuZhao,
and Parthasarathy Ranganathan. 2019. Software-Defined Far Memory
in Warehouse-Scale Computers.. In ASPLOS, Iris Bahar, Maurice
Herlihy, Emmett Witchel, and Alvin R. Lebeck (Eds.). ACM, 317–330.

[31] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. 2023. MEMTIS: Efficient Memory Tiering with Dynamic Page
Classification and Page Size Determination. In Proceedings of the 29th
Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP
’23). Association for Computing Machinery, New York, NY, USA, 17–34.
https://doi.org/10.1145/3600006.3613167

https://en.wikipedia.org/wiki/Tagged_pointer
https://en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease
https://en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease
https://doi.org/10.1109/HPCA.2019.00053
https://doi.org/10.14778/3598581.3598585
https://doi.org/10.1145/1012888.1005693
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://doi.org/10.1145/3183713.3196898
https://www.usenix.org/conference/fast20/presentation/chen-jiqiang
https://www.usenix.org/conference/fast20/presentation/chen-jiqiang
https://doi.org/10.1145/1133255.1134021
https://doi.org/10.1145/3368826.3377922
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2901318.2901344
https://doi.org/10.1145/3582016.3582031
https://doi.org/10.1109/MICRO61859.2024.00020
https://api.semanticscholar.org/CorpusID:11933396
https://api.semanticscholar.org/CorpusID:11933396
https://doi.org/10.1145/3016078.2851146
https://doi.org/10.1145/3600006.3613157
https://doi.org/10.1109/2.889095
https://doi.org/10.1145/1035292.1028983
https://groups.google.com/g/llvm-dev/c/aWHsdMxKAfE/m/WtEmRqyhAgAJ
https://groups.google.com/g/llvm-dev/c/aWHsdMxKAfE/m/WtEmRqyhAgAJ
https://doi.org/10.1145/279358.279404
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://doi.org/10.1145/3600006.3613167


Tidying Up the Address Space DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea

[32] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive
radix tree: ARTful indexing for main-memory databases. In 2013
IEEE 29th International Conference on Data Engineering (ICDE). 38–49.
https://doi.org/10.1109/ICDE.2013.6544812

[33] Baptiste Lepers and Willy Zwaenepoel. 2023. Johnny Cache: the
End of DRAM Cache Conflicts (in Tiered Main Memory Systems).
In 17th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 23). USENIX Association, Boston, MA, 519–534.
https://www.usenix.org/conference/osdi23/presentation/lepers

[34] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea
Zardoshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott
Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo
Bianchini. 2023. Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023).
Association for Computing Machinery, New York, NY, USA, 574–587.
https://doi.org/10.1145/3575693.3578835

[35] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark D. Hill, Marcus
Fontoura, and Ricardo Bianchini. 2022. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. arXiv:arXiv:2203.00241

[36] Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S. Berger, Marie
Nguyen, Xun Jian, Sam H. Noh, and Huaicheng Li. 2025. Systematic
CXL Memory Characterization and Performance Analysis at Scale.
Association for ComputingMachinery, New York, NY, USA, 1203–1217.
https://doi.org/10.1145/3676641.3715987

[37] YandongMao, Eddie Kohler, and Robert TappanMorris. 2012. Cache
craftiness for fast multicore key-value storage. In Proceedings of the
7th ACM European Conference on Computer Systems (Bern, Switzerland)
(EuroSys ’12). Association for Computing Machinery, New York, NY,
USA, 183–196. https://doi.org/10.1145/2168836.2168855

[38] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf
Chowdhury, Shobhit Kanaujia, and Prakash Chauhan. 2022. TPP:
Transparent Page Placement for CXL-Enabled Tiered Memory.
arXiv:arXiv:2206.02878

[39] Sara McAllister, Yucong "Sherry" Wang, Benjamin Berg, Daniel S.
Berger, George Amvrosiadis, Nathan Beckmann, and Gre-
gory R. Ganger. 2024. FairyWREN: A Sustainable Cache for
Emerging Write-Read-Erase Flash Interfaces. In 18th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 24). USENIX Association, Santa Clara, CA, 745–764.
https://www.usenix.org/conference/osdi24/presentation/mcallister

[40] Svetozar Miucin and Alexandra Fedorova. 2018. Data-driven
spatial locality. In Proceedings of the International Symposium on
Memory Systems (Alexandria, Virginia, USA) (MEMSYS ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 243–253.
https://doi.org/10.1145/3240302.3240417

[41] Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye:
Efficient Fine-grained OS Support for Huge Pages. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI,
USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 347–360. https://doi.org/10.1145/3297858.3304064

[42] William Pugh. 1990. Concurrent maintenance of skip lists. Technical
Report. USA.

[43] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. HeMem: Scalable Tiered Memory Management for Big
Data Applications and Real NVM. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (Virtual Event,
Germany) (SOSP ’21). Association for Computing Machinery, New
York, NY, USA, 392–407. https://doi.org/10.1145/3477132.3483550

[44] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated
Far Memory. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 315–332.
https://www.usenix.org/conference/osdi20/presentation/ruan

[45] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak
Falsafi, and Andreas Moshovos. 2006. Spatial Memory Streaming. In
Proceedings of the 33rd Annual International Symposium on Computer
Architecture (ISCA ’06). IEEE Computer Society, USA, 252–263.
https://doi.org/10.1109/ISCA.2006.38

[46] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong,
Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. 2023.
Demystifying CXL Memory with Genuine CXL-Ready Systems and
Devices. In Proceedings of the 56th Annual IEEE/ACM International
Symposium onMicroarchitecture (Toronto, ON, Canada) (MICRO ’23).
Association for Computing Machinery, New York, NY, USA, 105–121.
https://doi.org/10.1145/3613424.3614256

[47] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the next generation. In Proceedings of the Fifteenth European
Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY, USA, Article
30, 14 pages. https://doi.org/10.1145/3342195.3387517

[48] Nick Wanninger, TommyMcMichen, Simone Campanoni, and Peter
Dinda. 2024. Getting a Handle on Unmanaged Memory. In Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (La Jolla, CA,
USA) (ASPLOS ’24). Association for Computing Machinery, New York,
NY, USA, 448–463. https://doi.org/10.1145/3620666.3651326

[49] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. TMO: Transparent
Memory Offloading in Datacenters. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’22). Association for Computing Machinery, New York, NY, USA,
609–621. https://doi.org/10.1145/3503222.3507731

[50] Jon L. White. 1980. Address/memory management for a gigantic LISP
environment or, GC considered harmful. In Proceedings of the 1980 ACM
Conference on LISP and Functional Programming (Stanford University,
California, USA) (LFP ’80). Association for Computing Machinery, New
York, NY, USA, 119–127. https://doi.org/10.1145/800087.802797

[51] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale
analysis of hundreds of in-memory cache clusters at Twit-
ter. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 191–208.
https://www.usenix.org/conference/osdi20/presentation/yang

[52] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi
Vinayak. 2023. FIFO queues are all you need for cache eviction. In
Proceedings of the 29th Symposium on Operating Systems Principles
(Koblenz, Germany) (SOSP ’23). Association for Computing Machinery,
New York, NY, USA, 130–149. https://doi.org/10.1145/3600006.3613147

[53] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee,
Ishwar Agarwal, Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D.
Hill, Mosharaf Chowdhury, and Asaf Cidon. 2024. Managing
Memory Tiers with CXL in Virtualized Environments. In 18th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24). USENIX Association, Santa Clara, CA, 37–56. https:
//www.usenix.org/conference/osdi24/presentation/zhong-yuhong

[54] Zhuangzhuang Zhou, Vaibhav Gogte, Nilay Vaish, Chris Kennelly,
Patrick Xia, Svilen Kanev, Tipp Moseley, Christina Delimitrou, and
Parthasarathy Ranganathan. 2024. Characterizing a Memory Allocator
at Warehouse Scale. In Proceedings of the 29th ACM International

https://doi.org/10.1109/ICDE.2013.6544812
https://www.usenix.org/conference/osdi23/presentation/lepers
https://doi.org/10.1145/3575693.3578835
https://arxiv.org/abs/arXiv:2203.00241
https://doi.org/10.1145/3676641.3715987
https://doi.org/10.1145/2168836.2168855
https://arxiv.org/abs/arXiv:2206.02878
https://www.usenix.org/conference/osdi24/presentation/mcallister
https://doi.org/10.1145/3240302.3240417
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3477132.3483550
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1109/ISCA.2006.38
https://doi.org/10.1145/3613424.3614256
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3620666.3651326
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/800087.802797
https://www.usenix.org/conference/osdi20/presentation/yang
https://doi.org/10.1145/3600006.3613147
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong


DIMES ’25, October 13–16, 2025, Seoul, Republic of Korea V. Banakar, Y. Suli, K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, K. Keeton

Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (La Jolla, CA, USA) (ASPLOS ’24).

Association for Computing Machinery, New York, NY, USA, 192–206.
https://doi.org/10.1145/3620666.3651350

https://doi.org/10.1145/3620666.3651350

	Abstract
	1 Introduction
	2 Semantic Gap in Memory Management
	3 Workload-Optimized Address Space
	3.1 Enabling Object Mobility
	3.2 Grouping Objects by Access Intensity
	3.3 Decoupling Layout from Reclamation

	4 HADES
	5 Evaluation
	5.1 Frontend Effectiveness on YCSB Workloads
	5.2 Backend Integration Validation

	6 Limitations
	7 Related Work
	8 Conclusion
	References

